STUDYING LOOP-BASED ANOMALIES DETECTION IN DEBUGGING LARGE-
SCALE PARALLEL APPLICATIONS

Thanh-Dang Diep*, Anh-Tu Do-Mai, Nam Thoai
Faculty of Computer Science and Engineering, HCMC University of Technology, VYNUHCM

Corresponding Author: dang@hcmut.edu.vn
(Received: July 30th, 2016; Accepted: August 3lth, 2016)

ABSTRACT

Debugging large-scale parallel applications is a problematic issue. Characteristics of
scalability bring about an exponential increase in errors and many impacts on performance.
With suffering unacceptable memory overhead and debugging time, traditional techniques,
such as checkpointing or record and replay, have become obsolete when applying to large-
scale parallel applications. The ex-scale trend is coming, which demands cutting-edge large-
scale parallel applications debugging techniques. Instead of prior works based on locating
exact errors, we propose a trace file based approach by detecting abnormal behaviors arising
frequently in complicated message-passing channels. In this paper, anomalies are message
leaks which probably lead to unexpected program outputs and make programmers unable to
inspect manually errors. The technique utilizes one state-of-the-art detection algorithm which
is related three ordered rules. The proposed algorithm is proved the precision and effectiveness
by theoretical proofs and experimental results. With acceptable overhead, this technique shows
the potential for applying to large-scale parallel applications in general, especially ones
running on the computer clusters at Ho Chi Minh City University of Technology in particular.
Keywords: Debugging, Message leak, Parallel, Large-scale, Unusual behavior

TOM TAT
Truy 16i cho cdc tng dung song song c6 tinh mo réng la mét bai toan thach thire. Cdc ddc tinh
vé kha nang mo rong gdy ra vi¢c gia tang theo ham mi cdc loz lap trinh va gay ra nhiéu anh
hwong nghzem trong dén van dé hiéu sudt. Voi chi phi hao ton khé co thé chap nhan dwoc vé
mat bo nho va thoi gian, cac ky thudt truy 16i ¢6 dién chang han nhu checkpointing hodc record
& replay da tro nén lac hau khi dp dung vao cac ung dung song song c6 tinh mo rong. Xu
huéng ex-scale dang dén gan doi phai phai tim ra cdc ky thudt truy 16i hién dai thich hop cho
cac ing dung song song dé thay thé cho cdc phirong phdp cé dién. Thay vi tiép cdn theo huéng
tim kiém chinh xdc 16i truée ddy, ching t6i thiee hién theo mot hwéng tiép cin khdc dua trén
trace file nham phat hién cdc hanh vi bat thieong xdy ra thwong xuyén trong cdc kénh truyén
thong diép phirc tap. Trong bai bdo nay, cac hanh vi bdt thuwong la cdc ro ri théng diép gay ra
két qua chirong trinh khong mong muon cho nguoi lap trinh va lam cho ho khong thé phat hién
ra 16i bang mdt thwong. Ky thudt truy 16 nay siv dung mot gidi thudt phdt hién hién dai dya
trén ba quy ludt co thwr ty. Gidi thudt duoc dé xuat da duoc kiém chung vé tinh chinh xdc lan
tinh hiéu quad duwa trén cdc chirng minh 1y thuyét va cdc két qud thwe nghiém. Vi phi ton kha
thi vé bé nhé va thoi gian, ky thudt truy 16i ndy cé thé dp dung vao cdc g dung song song co
tinh mo rong noi chung ciing nhuw la cac ing dung song song dang chay trén hé théng may tinh
cum hién ¢6 tai truong Pai Hoc Bach Khoa Thanh Pho Ho
Chi Minh ndi riéng.
Tir khéa: Truy 16i, RO ri théng diép, Song song, Tinh mé rong, Hanh vi bat thuong

INTRODUCTION debugging techniques (Thanh-Phuong and
In large-scale parallel applications with long Nam, 2010, Thanh-Phuong, 2011, Thoai et al.,
runtime, messages exchanging happens 2002a, Thoai etal., 2002b, Thoai and Volkert,
frequently, locating exactly errors seems 2002) no longer support efficiently
impossible once the execution result produced contemporary large-scale parallel applications
unexpectedly. The traditional because of the overhead of

44

mailto:dang@hcmut.edu.vn

Science and Technology Development, Vollum 2 (3)

computation and the scalability feature.
Hence, our suggested debugging technique is
approached by another method. The
programmers focus on detecting behaviors
which are called unusual behaviors, and then
infer the origin of errors. Not all unusual
behaviors cause errors, but these behaviors
should be taken as warning points which are
vulnerable to errors.

Focusing on loops is an approach which has
already been studied in (Ahn et al., 2009,
Laguna et al., 2012, Mitra et al.,, 2014,
Bahmani and Mueller, 2014, Wu and Mueller,
2013). In this paper, message leak problem is
main unusual behavior that is going to be
discovered to debug large-scale parallel
applications. A leaked message stands in loop
context could lead to many other leaked ones,
which makes change to the order of sending
and receiving events and has serious effects on
the result of execution. Thus, being able to
detect the presence of leaked messages has a
great help to programmers with locating
errors.

The matter of trade-off between trace’s size
and algorithm’s complexity must be advised
prudently in proposing new approach.
Generally, trace file must be optimized to
minimize the overhead of computing and
storing processes.

In this paper, a new debugging technique
called loop-based unusual behaviors detecting
technique is proposed to warn programmers
about message leaks which manifest in loops
in large-scale parallel applications. The rest of
this paper is structured as follows: Section
Message Leak Problem defines the message
leak problem. Some important concepts that
pave the way for debugging to large-scale
parallel programs are also given in this
section. The method to implement message
leak problem and other related issues are
described in section Message Leak Detection
and section Implementation, whereas some
evaluations and experimental results are listed
in section Evaluation. Finally, Conclusions
and Future Work are given in the last section.

MESSAGE LEAK PROBLEM
The parallel applications which are covered in
this paper belong to message-passing

model. There are two important kinds of
considered events: sending events and receiving
events. In the limited scope of this paper, we are
not greedy to wrap up all aspects of this field;
we instead just consider applications whose
processes communicate

by point-to-point

method. event is , denoted
Match in pairs where is
A sending

RankSend

index of process at which the sending event

happens and Pest is index of process which
the sending event sends message to. A
receiving event IS denoted as
R(RankRecv,Src) where RankRecv jg

index of process at which the receiving event

happens and S7°¢ is index of process which
the receiving event receives message from.

A sending event is called “match in pairs” in
case the message sent by sending event S is
received by receiving event R (See figure 1).
We denoted as § & R

RankSend = Src

RankRecvy = Dest

Otherwise, 8oes not match in pairs witlR

which denoted as® * & when both ® and R
do not operate on the same message or the
following condition satisfied:

[RankSend # Src

RankRecv # Dest

Unusual behaviors in loops

Each parallel program is often organized in a
set of loop cycles which each of them is a set
of iterations. Using loops brings some
unpredictable troubles, especially in case of
large-scale applications. Errors occurring
within loop cycles are able to propagate,
which explains why loops are easily
vulnerable to errors.

Programmers normally intend to code a
program that all sending and receiving events
can match in pairs in same iteration. However,
in some cases, there are few redundant
sending or receiving events in different
iterations, this context can be happened by
three causes:

(1) A redundant sending event sent a message
to a receiving event in different iteration, the
same as the redundant receiving event
received message from another sending event
in another iteration.

S™R =>{

45

Science and Technology Development, Vollum 2 (3)

o - — = >

Figure 1. Leaked messages within iterations
event graph
(2) No matching receiving event corresponds
to a redundant sending event, even in either
other iterations or other loop cycles. It means

that message sent by this sending event will
be received by
application might still run normally without
any hang. The only consequence is the loss of
this message, which leads to producing
wrongful result.

(3) No matching sending event corresponds

to a redundant receiving event, even in either
other iterations or other loop cycles. This one
is definitely an error that could lead to a hang.
Whether the programmer intentionally or
inadvertently let that happen, those cases are
all considered as unusual behaviors, those
sending and receiving events are all
considered as unusual ones.
Definition of Leaked Message
Message leak is an unusual behavior that
belongs to case (1), (2) mentioned in the
previous section. Message leaks problem
could leads to some unanticipated serious
errors if programmers do not control the
dataflow in communication well. This
problem is worth considering alleviating the
high rate of those errors happening.
Parallel application is often organized as a set
of loop cycles Ly, Lo, ...,L
n |
is a set of iterations. Each iteration
contains two subsets 5., and R, , which is
denoted as I.;, = (5...R..), where 5, isa
set of sending events and R, , is a set of

receiving events

Sex = {St,k[l]JSr,k[Z]: s Sen [p] }

R, = { Rt,k[l]'R:.k [2],..., R, [q] }

Clearly, the number of iterations of loop cycle

L:is IL.| The number of sending events
operating in iteration I, , isthe number of

elements of subset S, ., which is denoted

m

no receiving event. The

, each loop cycle

as |S, |- Similarly, |R, .| denotes the number
of receiving events in iteration y . With

these notations and formulas, the message
leak problem happens within iterations when:

The case where message leak happens within
loop cycles could be re-explained as:

3 P = = q., h-; k; l}] . Sp_.h [l] R Rq‘,-k [j]

MESSAGE LEAK DETECTION
To detect automatically message leak

problem, this paper suggests three following
rules
Rule 1: Message leak is detected if

3, k: IS,.] # R, 5
From the definition of “match in pairs”, a
couple of sending event and receiving event
matching in pairs must satisfy two following
conditions:
{Ra.nkSen.d = Src ()

RankRecv = Dest :

Because the parallel programs considered in
this paper are the large-scale parallel
programs which comprise of loop cycles, if
(=) is applied to consecutively compare each
pairs of sending and receiving event in
implementation, the overhead will become
very high. Thus, we proposed a slightly
looser system of equations but the overhead
reduces significantly.
Noticing that the parallel application is
assumed had passed through Rule 1, which
could be:

1S:0l = |Rt.k|
Rule 2: Message leak is detected if
- n n

Z RankSend, ,[i] # Z 57, [i]

n n
ZRa:nkRecvtk[j] * ZD‘-’St:.k[i]
L j i

(=)

With ISexc| = [Rexe
With this rule are used as an extra one to the first
rule, it is able to detect message leaks more
accurately in case the programmer makes
mistake of coding by using wrong source
parameter at receiving events or wrong
destination parameter at sending events.
Applying two previous rules to detect leaked
messages in executing large-scale parallel

=n

46

Science and Technology Development, Vollum 2 (3)

applications, it is able to detect message leaks
in most common cases. Nonetheless, it still
contains some exceptional cases causing
message leaks after the aforementioned two
rules are applied. Therefore, we proposed the
third rule to improve this detection accuracy.

Rule 3: Message leak is detected if

XOR{P(5,)}=1,XOR{P(Ry)} =0

Iteration 1 has:
XOR{P(5,)}=0,X0R{P(R,)}=1
Because of XOR{P(S,)} # XOR{P(R,)},

clearly, with Rule 3, iteration 0 has leaked
messages. In addition, we also have:

XOR{P(S . [1]P (S, [21). .. P(S . [n])} = XORABL R OB 837 FORB e 5P (Ro)

With
P(St,.k [1]) = RankSend, . [i] * Dest, . [i]
P(Rt.k [1]) = RankRecv,, [j] * Src, . [j]
In this rule, exclusive-OR operator is going to
be used as a simple hash to compare two sets:

sending events set and receiving event set. The
collision probability of hashed values
1

using exclusive-or isz2®, where ™ is the
number of bits of hashed keys. The
multiplications P(5), P(R) expand the range
of key values belonging to [0,2°" — 1],1this

leads the collision probability to remain 2",
Moreover, the more processes participate in,
the smaller this probability will be.

The following example is a case that satisfies
Rule 1 and Rule 2, but still remains leaked
messages. Rule 3 is proposed to solve this
case:

Iteration 0

Iteration 1

/s

Figure 2. Message leak problem example
Figure 2 shows that, all messages sent in one
iteration are received by receiving events in
another iteration, which means there is
existence of leaked messages within
iterations. The number of sending events and
the number of receiving events are equal and

equal % in each iteration, this satisfies Rule 1

but no leaked message is detected. We also
have:

t
Z RankSend = z RankRecv = Z Dest 5

Rule 2 is also unable to apply in this case.
With Rule 3, at iteration O:

The equation above proves that at the end of
iteration 1, leaked messages are no longer
leaked; all leaked ones have matched their
corresponding sending or receiving events.

IMPLEMENTATION
Trace generating
With three rules in Section Message Leak
Detection, leaked message detection requires
only a little information of sending and
receiving events. Hence, the structure of a
trace file contains a set of behavior patterns
corresponding to iterations in each loop:
Table 1. Pattern of iteration behaviors
Iterlds
NumSend
NumRecv
SumDest
SumSrc
SumRankSend
SumRankRecv
XorSend
XorRecv
These above values will finish computation at
the end of an iteration, which is called
corresponding behavior pattern as Table 1.
Each iteration has one and only one such
pattern. Moreover, behaviors within iterations
may be similar in some loops, so to prevent
tracing the same pattern many times, the
pattern is going to be compared with the
previous one. Those values are just updated as
a new pattern of iteration behaviors in case of
not match comparison.
Therefore, on each process, the set of behavior
patterns getting after execution is done
determines information of sending and
receiving events that process knew in message
passing environment. Considering those sets
on entire processes, gathered data is sufficient
cate leaked messages within iterations,
eydes. 6
Signal functions

47

Science and Technology Development, Vollum 2 (3)

To apply the rules, we must instrument
necessary data in loops. Where Begin_Loop
and End_Loop are the beginning and the end
of a loop cycle respectively, Begin_lteration
and End_lteration are also alternately the
beginning and the end of loop iterations which
belong to the loop cycle. The aforementioned
functions are all called signal functions of
loops. Moreover, these functions also
implement some tasks such as collecting,
computing, storing data, etc.

Begin_Loop;

for {
Begin_lteration;
/I Code in loop
End_Iteration;

}
End_Loop;

To insert the signal functions into loops, two
techniques can be possible. One technique
inserts the signal functions into compiler’s
source code while another technique
transforms programmer’s source code into
new one included the signal functions. If
applying the former, the waiting time is
smaller in comparison with the latter, but
implementation is very complex and thus, we
use the latter to instrument essential data in
loops.

EVALUATION

Our implementation is named as MessLeak. In
the scope of this paper, key feature of parallel
applications is scalability, so to evaluate how
our approach is working; implemented
experiments are going to focus on the
effectiveness in lowering the overhead
regarding to three aspects: (1) leaked message
detection’s precision, (2) traces’ size and (3)
trace generating time.

For (1), we used the scalable version (running
this with more processes) of example in Table
2 to emphasize the role of Rule 3 in making
leaked message detection much tighter.
Moreover, through this experiment, also
evaluate the accuracy of three detection rules.
With aspects (2) and (3), we used HPL
benchmark (version 2.1) with various tuning
options.

All experiments were conducted on 48 core
cluster with 8 compute nodes, 16 GB per node.
Each measurement has been repeated

three times to get average value. Our
experiments just run on sufficient processes to
reflect the trends of trace size and generation
time growth with respect to execution scale.
Trace file size

The first experiment is going to evaluate the
overhead for storing of MessLeak’s trace file in
comparison with several other well-known
tracing tools TAU, VampirTrace and
ScalaTrace. The difference of tracing purpose
and amount of storing information is the main
reason why we choose these tracing tools.
Testing application used in this experiment is
HPL. We configured MessLeak to be able to
apply all three detection rules, which requires
MessLeak has to store entire necessary
parameters of iteration pattern as Table 1. This
configuration will provide fully input data to
solve message leak problem. Running this
benchmark with 100 processes, we got the
following result:

Table 2. HPL ’s trace files cross tracing tools

TAU [VampirTrace | ScalaTrace | MessLeak

6.5GB 1GB 238MB 348KB

With MessLeak, selective storing has positive
effect on overhead. Although solving message
leak problem has just focused on a subset of
parallel applications, this experiment has
emphasized the feasibility of leaked message
detection debugging technique. Moreover,
this satisfactory result also shows the
potentiality of debugging approach by
considering abnormal behaviors. The second
experiment evaluates the efficiency of
MessLeak when the number of iterations
increases.

B s
- - -
- 6 muE B
g 4 (s b
g 2 ol : b
£, HHE]| Hu, HM
E 500 1000 1500 2000
“ Number of processes

m 18 iterations m27 iterations m 36 iterations

Figure 3. HPL s trace files within
various iterations
Figure 3 compares the size of generated trace
files when running with 18, 27, 36 iterations.
Because of the similarity of iteration

48

Science and Technology Development, VVollum 2 (3)

behaviors, with MessLeak, the trace files’ size
may just have a little change when iterations
have great growth. Regarding to large-scale
parallel applications, consistency in iteration
behaviors is a frequent existing feature,
especially in case of SPMD programs.
Moreover, with the increment of the number
of processes, trace files’ size increases in
linear. Trace file size increment seems
obvious when the application scales up, but
MessLeak keeps that growth in linear, not
exponent.

1900 18 iterations

1000

800

600
400 I

200
500 1000 1500

Number of processes

Time(s)

2000

H App Time MessLeak Time

2500
2000

1500

Time(s)

1000

500

500

Trace generating time

In this section, the experiment is implemented to
evaluate the time to generate trace files of
MessLeak. We ran HPL benchmark two times:
in single and in integrating with MessLeak to
compare execution times each other. The
benchmark is run consecutively with 500, 1000,
1500 and 2000 processes in three options: 18, 27
and 36 iterations. The results are shown in
following charts:

2000 27 iterations

1500

1000

500 l

500 1000 1500
Number of processes
H App Time MessLeak Time

Time(s)

2000

36 iterations

1000 1500 2000

Number of processes

M App Time

MessLeak Time

Figure 4. HPL’s trace generating time in 36 iterations

From Figure 4, the time MessLeak used to
generate trace files is not much different
from cases running without MessLeak. The
differential time if having just takes less than
5% the time this application finishes its
execution. This proves that MessLeak is able
to collect data to solve message leak problem
without affecting much running time.

CONCLUSIONS AND FUTURE WORK
In this paper, we defined unusual behaviors
manifesting in loops belonging to large-scale
parallel applications. They are leaked
messages which obviously can cause
potential errors within loop iterations or loop
cycles. In addition, we proposed a novel
technique in order to help warn programmers
about the message leak problem.

For future work, we have identified a number
of research directions. We’re going to
research behaviors which use collective
communication in order to cover all aspects
of message passing communication.
Moreover, MPI_ANY_SOURCE wild card
could bring race condition, a programming
fault producing non-deterministic program
state and behavior due to un-synchronized
parallel program executions. Race condition
is very problematic to resolve in general and
hence, we will also carry out the research so
as to address it. Finally, we also plan to
perform further experiments on more subject
programs of larger size with a varying
number of faults.

49

Science and Technology Development, Vollum 2 (3)

REFERENCES

AHN, D. H., DE SUPINSKI, B. R., LAGUNA, |, LEE, G. L., LIBLIT, B., MILLER, B. P. &
SCHULZ, M. Scalable temporal order analysis for large scale debugging. Proceedings
of the Conference on High Performance Computing Networking, Storage and Analysis,
2009. ACM, 44.

BAHMANI, A. & MUELLER, F. Scalable performance analysis of exascale mpi programs
through signature-based clustering algorithms. Proceedings of the 28th ACM
international conference on Supercomputing, 2014. ACM, 155-164.

LAGUNA, I., AHN, D. H., DE SUPINSKI, B. R., BAGCHI, S. & GAMBLIN, T.
Probabilistic diagnosis of performance faults in large-scale parallel applications.
Proceedings of the 21st international conference on Parallel architectures and
compilation techniques, 2012. ACM, 213-222.

MITRA, S., LAGUNA, I., AHN, D. H., BAGCHI, S., SCHULZ, M. & GAMBLIN, T.
Accurate application progress analysis for large-scale parallel debugging. ACM
SIGPLAN Notices, 2014. ACM, 193-203.

THANH-PHUONG, P. & NAM, T. 2010. LiR: A Light Weight Replay Technique for
Debugging Message Passing Programs. International Conference on Advanced
Computing and Applications. Ho Chi Minh, Vietnam.

THANH-PHUONG, P. N., THOAI 2011. C2LiR: An approach to apply coordinated
checkpointing to light weight replay technique. International Conference on Advanced
Computing and Applications. Ho Chi Minh, Vietnam.

THOAI, N., KRANZLMULLER, D. & VOLKERT, J. ROS: The rollback-one-step method to
minimize the waiting time during debugging long-running parallel programs.
International Conference on High Performance Computing for Computational Science,
2002. Springer, 664-678.

WU, X. & MUELLER, F. Elastic and scalable tracing and accurate replay of non-
deterministic events. Proceedings of the 27th international ACM conference on
International conference on supercomputing, 2013. ACM, 59-68.

