
STUDYING LOOP-BASED ANOMALIES DETECTION IN DEBUGGING LARGE-

SCALE PARALLEL APPLICATIONS

Thanh-Dang Diep
*
, Anh-Tu Do-Mai, Nam Thoai

Faculty of Computer Science and Engineering, HCMC University of Technology, VNUHCM
*
Corresponding Author: dang@hcmut.edu.vn

(Received: July 30
th

, 2016; Accepted: August 31
th

, 2016)

ABSTRACT
Debugging large-scale parallel applications is a problematic issue. Characteristics of

scalability bring about an exponential increase in errors and many impacts on performance.

With suffering unacceptable memory overhead and debugging time, traditional techniques,

such as checkpointing or record and replay, have become obsolete when applying to large-

scale parallel applications. The ex-scale trend is coming, which demands cutting-edge large-

scale parallel applications debugging techniques. Instead of prior works based on locating

exact errors, we propose a trace file based approach by detecting abnormal behaviors arising

frequently in complicated message-passing channels. In this paper, anomalies are message

leaks which probably lead to unexpected program outputs and make programmers unable to

inspect manually errors. The technique utilizes one state-of-the-art detection algorithm which

is related three ordered rules. The proposed algorithm is proved the precision and effectiveness

by theoretical proofs and experimental results. With acceptable overhead, this technique shows

the potential for applying to large-scale parallel applications in general, especially ones

running on the computer clusters at Ho Chi Minh City University of Technology in particular.
Keywords: Debugging, Message leak, Parallel, Large-scale, Unusual behavior

TÓM TẮT
Truy lỗi cho các ứng dụng song song có tính mở rộng là một bài toán thách thức. Các đặc tính

về khả năng mở rộng gây ra việc gia tăng theo hàm mũ các lỗi lập trình và gây ra nhiều ảnh

hưởng nghiêm trọng đến vấn đề hiệu suất. Với chi phí hao tổn khó có thể chấp nhận được về

mặt bộ nhớ và thời gian, các kỹ thuật truy lỗi cổ điển chẳng hạn như checkpointing hoặc record

& replay đã trở nên lạc hậu khi áp dụng vào các ứng dụng song song có tính mở rộng. Xu

hướng ex-scale đang đến gần đòi phải phải tìm ra các kỹ thuật truy lỗi hiện đại thích hợp cho

các ứng dụng song song để thay thế cho các phương pháp cổ điển. Thay vì tiếp cận theo hướng

tìm kiếm chính xác lỗi trước đây, chúng tôi thực hiện theo một hướng tiếp cận khác dựa trên

trace file nhằm phát hiện các hành vi bất thường xảy ra thường xuyên trong các kênh truyền

thông điệp phức tạp. Trong bài báo này, các hành vi bất thường là các rò rỉ thông điệp gây ra

kết quả chương trình không mong muốn cho người lập trình và làm cho họ không thể phát hiện

ra lỗi bằng mắt thường. Kỹ thuật truy lỗi này sử dụng một giải thuật phát hiện hiện đại dựa

trên ba quy luật có thứ tự. Giải thuật được đề xuất đã được kiểm chứng về tính chính xác lẫn

tính hiệu quả dựa trên các chứng minh lý thuyết và các kết quả thực nghiệm. Với phí tốn khả

thi về bộ nhớ và thời gian, kỹ thuật truy lỗi này có thể áp dụng vào các ứng dụng song song có

tính mở rộng nói chung cũng như là các ứng dụng song song đang chạy trên hệ thống máy tính

cụm hiện có tại trường Đại Học Bách Khoa Thành Phố Hồ
Chí Minh nói riêng.
Từ khóa: Truy lỗi, Rò rỉ thông điệp, Song song, Tính mở rộng, Hành vi bất thường

INTRODUCTION
In large-scale parallel applications with long

runtime, messages exchanging happens
frequently, locating exactly errors seems

impossible once the execution result produced
unexpectedly. The traditional

debugging techniques (Thanh-Phuong and

Nam, 2010, Thanh-Phuong, 2011, Thoai et al.,

2002a, Thoai et al., 2002b, Thoai and Volkert,

2002) no longer support efficiently

contemporary large-scale parallel applications

because of the overhead of

44

mailto:dang@hcmut.edu.vn

Science and Technology Development, Vollum 2 (3)

computation and the scalability feature.

Hence, our suggested debugging technique is

approached by another method. The

programmers focus on detecting behaviors

which are called unusual behaviors, and then

infer the origin of errors. Not all unusual

behaviors cause errors, but these behaviors

should be taken as warning points which are

vulnerable to errors.
Focusing on loops is an approach which has

already been studied in (Ahn et al., 2009,

Laguna et al., 2012, Mitra et al., 2014,

Bahmani and Mueller, 2014, Wu and Mueller,

2013). In this paper, message leak problem is

main unusual behavior that is going to be

discovered to debug large-scale parallel

applications. A leaked message stands in loop

context could lead to many other leaked ones,

which makes change to the order of sending

and receiving events and has serious effects on

the result of execution. Thus, being able to

detect the presence of leaked messages has a

great help to programmers with locating

errors.
The matter of trade-off between trace’s size

and algorithm’s complexity must be advised

prudently in proposing new approach.

Generally, trace file must be optimized to

minimize the overhead of computing and

storing processes.
In this paper, a new debugging technique

called loop-based unusual behaviors detecting

technique is proposed to warn programmers

about message leaks which manifest in loops

in large-scale parallel applications. The rest of

this paper is structured as follows: Section

Message Leak Problem defines the message

leak problem. Some important concepts that

pave the way for debugging to large-scale

parallel programs are also given in this

section. The method to implement message

leak problem and other related issues are

described in section Message Leak Detection

and section Implementation, whereas some

evaluations and experimental results are listed

in section Evaluation. Finally, Conclusions

and Future Work are given in the last section.

MESSAGE LEAK PROBLEM
The parallel applications which are covered in
this paper belong to message-passing

model. There are two important kinds of

considered events: sending events and receiving

events. In the limited scope of this paper, we are

not greedy to wrap up all aspects of this field;

we instead just consider applications whose

processes communicate
by point-to-point

method.
Match in pairs

A sending

as
index of process at which the sending event

happens and is index of process which
the sending event sends message to. A

receiving event is denoted as

, where is
index of process at which the receiving event

happens and is index of process which
the receiving event receives message from.
A sending event is called “match in pairs” in

case the message sent by sending event S is

received by receiving event R (See figure 1).
We denoted as

Otherwise, does not match in pairs with ,

which denoted as when both and

do not operate on the same message or the
following condition satisfied:

Unusual behaviors in loops
Each parallel program is often organized in a

set of loop cycles which each of them is a set

of iterations. Using loops brings some

unpredictable troubles, especially in case of

large-scale applications. Errors occurring

within loop cycles are able to propagate,

which explains why loops are easily

vulnerable to errors.
Programmers normally intend to code a

program that all sending and receiving events

can match in pairs in same iteration. However,

in some cases, there are few redundant

sending or receiving events in different

iterations, this context can be happened by

three causes:
(1) A redundant sending event sent a message

to a receiving event in different iteration, the
same as the redundant receiving event

received message from another sending event
in another iteration.

event is ,
where

denoted
is

45

Science and Technology Development, Vollum 2 (3)

 as . Similarly, denotes the number

 of receiving events in iteration . With

 these notations and formulas, the message

 leak problem happens within iterations when:

 The case where message leak happens within

Figure 1. Leaked messages within iterations
loop cycles could be re-explained as:

 event graph

(2) No matching receiving event corresponds
MESSAGE LEAK DETECTION

to a redundant sending event, even in either

To detect automatically message leak

other iterations or other loop cycles. It means

problem, this paper suggests three following that message sent by this sending event will
rules

be received by no receiving event. The

Rule 1: Message leak is detected if

application might still run normally without

any hang. The only consequence is the loss of

this message, which leads to producing From the definition of “match in pairs”, a

wrongful result. couple of sending event and receiving event

(3) No matching sending event corresponds matching in pairs must satisfy two following

to a redundant receiving event, even in either conditions:
other iterations or other loop cycles. This one

is definitely an error that could lead to a hang.

Because the parallel programs considered in Whether the programmer intentionally or
inadvertently let that happen, those cases are this paper are the large-scale parallel

all considered as unusual behaviors, those programs which comprise of loop cycles, if
sending and receiving events are all is applied to consecutively compare each

considered as unusual ones. pairs of sending and receiving event in

Definition of Leaked Message implementation, the overhead will become

Message leak is an unusual behavior that very high. Thus, we proposed a slightly

belongs to case (1), (2) mentioned in the looser system of equations but the overhead

previous section. Message leaks problem reduces significantly.

could leads to some unanticipated serious Noticing that the parallel application is

errors if programmers do not control the assumed had passed through Rule 1, which

dataflow in communication well. This could be:
problem is worth considering alleviating the

high rate of those errors happening.
Rule 2: Message leak is detected if

Parallel application is often organized as a set

of loop cycles , each loop cycle

is a set of iterations. Each iteration

contains two subsets and , which is

denoted as , where is a

set of sending events and is a set of

receiving events

Clearly, the number of iterations of loop cycle

 is . The number of sending events

operating in iteration is the number of

elements of subset , which is denoted

With

With this rule are used as an extra one to the first

rule, it is able to detect message leaks more

accurately in case the programmer makes

mistake of coding by using wrong source

parameter at receiving events or wrong

destination parameter at sending events.
Applying two previous rules to detect leaked
messages in executing large-scale parallel

46

Science and Technology Development, Vollum 2 (3)

applications, it is able to detect message leaks

in most common cases. Nonetheless, it still

contains some exceptional cases causing

message leaks after the aforementioned two

rules are applied. Therefore, we proposed the

third rule to improve this detection accuracy.
Rule 3: Message leak is detected if

With

In this rule, exclusive-OR operator is going to

be used as a simple hash to compare two sets:

sending events set and receiving event set. The

collision probability of hashed values

using exclusive-or is , where is the
number of bits of hashed keys. The

multiplications , expand the range

of key values belonging to , this

leads the collision probability to remain .
Moreover, the more processes participate in,
the smaller this probability will be.
The following example is a case that satisfies
Rule 1 and Rule 2, but still remains leaked

messages. Rule 3 is proposed to solve this
case:

Figure 2. Message leak problem example

Figure 2 shows that, all messages sent in one

iteration are received by receiving events in

another iteration, which means there is

existence of leaked messages within

iterations. The number of sending events and

the number of receiving events are equal and

equal in each iteration, this satisfies Rule 1
but no leaked message is detected. We also
have:

Rule 2 is also unable to apply in this case.
With Rule 3, at iteration 0:

Iteration 1 has:

Because of ,

clearly, with Rule 3, iteration 0 has leaked
messages. In addition, we also have:

The equation above proves that at the end of

iteration 1, leaked messages are no longer
leaked; all leaked ones have matched their

corresponding sending or receiving events.

IMPLEMENTATION

Trace generating
With three rules in Section Message Leak

Detection, leaked message detection requires

only a little information of sending and

receiving events. Hence, the structure of a

trace file contains a set of behavior patterns

corresponding to iterations in each loop:
Table 1. Pattern of iteration behaviors

IterIds
NumSend

NumRecv
SumDest

SumSrc

SumRankSend

SumRankRecv

XorSend

XorRecv
These above values will finish computation at

the end of an iteration, which is called

corresponding behavior pattern as Table 1.

Each iteration has one and only one such

pattern. Moreover, behaviors within iterations

may be similar in some loops, so to prevent

tracing the same pattern many times, the

pattern is going to be compared with the

previous one. Those values are just updated as

a new pattern of iteration behaviors in case of

not match comparison.
Therefore, on each process, the set of behavior

patterns getting after execution is done

determines information of sending and

receiving events that process knew in message

passing environment. Considering those sets

on entire processes, gathered data is sufficient

to locate leaked messages within iterations,

loop cycles.
Signal functions

47

Science and Technology Development, Vollum 2 (3)

To apply the rules, we must instrument

necessary data in loops. Where Begin_Loop

and End_Loop are the beginning and the end

of a loop cycle respectively, Begin_Iteration

and End_Iteration are also alternately the

beginning and the end of loop iterations which

belong to the loop cycle. The aforementioned

functions are all called signal functions of

loops. Moreover, these functions also

implement some tasks such as collecting,

computing, storing data, etc.

Begin_Loop;
for {

Begin_Iteration;
// Code in loop
End_Iteration;

}
End_Loop;

To insert the signal functions into loops, two

techniques can be possible. One technique

inserts the signal functions into compiler’s

source code while another technique

transforms programmer’s source code into

new one included the signal functions. If

applying the former, the waiting time is

smaller in comparison with the latter, but

implementation is very complex and thus, we

use the latter to instrument essential data in

loops.

EVALUATION
Our implementation is named as MessLeak. In

the scope of this paper, key feature of parallel

applications is scalability, so to evaluate how

our approach is working; implemented

experiments are going to focus on the

effectiveness in lowering the overhead

regarding to three aspects: (1) leaked message

detection’s precision, (2) traces’ size and (3)

trace generating time.
For (1), we used the scalable version (running

this with more processes) of example in Table

2 to emphasize the role of Rule 3 in making

leaked message detection much tighter.

Moreover, through this experiment, also

evaluate the accuracy of three detection rules.

With aspects (2) and (3), we used HPL

benchmark (version 2.1) with various tuning

options.
All experiments were conducted on 48 core
cluster with 8 compute nodes, 16 GB per node.
Each measurement has been repeated

three times to get average value. Our
experiments just run on sufficient processes to

reflect the trends of trace size and generation

time growth with respect to execution scale.
Trace file size
The first experiment is going to evaluate the

overhead for storing of MessLeak’s trace file in

comparison with several other well-known

tracing tools TAU, VampirTrace and

ScalaTrace. The difference of tracing purpose

and amount of storing information is the main

reason why we choose these tracing tools.

Testing application used in this experiment is

HPL. We configured MessLeak to be able to

apply all three detection rules, which requires

MessLeak has to store entire necessary

parameters of iteration pattern as Table 1. This

configuration will provide fully input data to

solve message leak problem. Running this

benchmark with 100 processes, we got the

following result:

Table 2. HPL’s trace files cross tracing tools
TAU VampirTrace ScalaTrace MessLeak

6.5GB 1GB 238MB 348KB

With MessLeak, selective storing has positive

effect on overhead. Although solving message

leak problem has just focused on a subset of

parallel applications, this experiment has

emphasized the feasibility of leaked message

detection debugging technique. Moreover,

this satisfactory result also shows the

potentiality of debugging approach by

considering abnormal behaviors. The second

experiment evaluates the efficiency of

MessLeak when the number of iterations

increases.

Figure 3. HPL’s trace files within
various iterations

Figure 3 compares the size of generated trace
files when running with 18, 27, 36 iterations.
Because of the similarity of iteration

48

Science and Technology Development, Vollum 2 (3)

behaviors, with MessLeak, the trace files’ size

may just have a little change when iterations

have great growth. Regarding to large-scale

parallel applications, consistency in iteration

behaviors is a frequent existing feature,

especially in case of SPMD programs.

Moreover, with the increment of the number

of processes, trace files’ size increases in

linear. Trace file size increment seems

obvious when the application scales up, but

MessLeak keeps that growth in linear, not

exponent.

Trace generating time
In this section, the experiment is implemented to

evaluate the time to generate trace files of

MessLeak. We ran HPL benchmark two times:

in single and in integrating with MessLeak to

compare execution times each other. The

benchmark is run consecutively with 500, 1000,

1500 and 2000 processes in three options: 18, 27

and 36 iterations. The results are shown in

following charts:

Figure 4. HPL’s trace generating time in 36 iterations

From Figure 4, the time MessLeak used to For future work, we have identified a number

generate trace files is not much different of research directions. We’re going to

from cases running without MessLeak. The research behaviors which use collective

differential time if having just takes less than communication in order to cover all aspects

5% the time this application finishes its of message passing communication.

execution. This proves that MessLeak is able Moreover, MPI_ANY_SOURCE wild card

to collect data to solve message leak problem could bring race condition, a programming

without affecting much running time. fault producing non-deterministic program

 state and behavior due to un-synchronized

CONCLUSIONS AND FUTURE WORK parallel program executions. Race condition

In this paper, we defined unusual behaviors is very problematic to resolve in general and
manifesting in loops belonging to large-scale hence, we will also carry out the research so

parallel applications. They are leaked as to address it. Finally, we also plan to

messages which obviously can cause perform further experiments on more subject

potential errors within loop iterations or loop programs of larger size with a varying

cycles. In addition, we proposed a novel number of faults.

technique in order to help warn programmers

about the message leak problem.

49

Science and Technology Development, Vollum 2 (3)

REFERENCES
AHN, D. H., DE SUPINSKI, B. R., LAGUNA, I., LEE, G. L., LIBLIT, B., MILLER, B. P. &

SCHULZ, M. Scalable temporal order analysis for large scale debugging. Proceedings

of the Conference on High Performance Computing Networking, Storage and Analysis,
2009. ACM, 44.

BAHMANI, A. & MUELLER, F. Scalable performance analysis of exascale mpi programs

through signature-based clustering algorithms. Proceedings of the 28th ACM
international conference on Supercomputing, 2014. ACM, 155-164.

LAGUNA, I., AHN, D. H., DE SUPINSKI, B. R., BAGCHI, S. & GAMBLIN, T.
Probabilistic diagnosis of performance faults in large-scale parallel applications.

Proceedings of the 21st international conference on Parallel architectures and
compilation techniques, 2012. ACM, 213-222.

MITRA, S., LAGUNA, I., AHN, D. H., BAGCHI, S., SCHULZ, M. & GAMBLIN, T.
Accurate application progress analysis for large-scale parallel debugging. ACM
SIGPLAN Notices, 2014. ACM, 193-203.

THANH-PHUONG, P. & NAM, T. 2010. LiR: A Light Weight Replay Technique for
Debugging Message Passing Programs. International Conference on Advanced
Computing and Applications. Ho Chi Minh, Vietnam.

THANH-PHUONG, P. N., THOAI 2011. C2LiR: An approach to apply coordinated
checkpointing to light weight replay technique. International Conference on Advanced
Computing and Applications. Ho Chi Minh, Vietnam.

THOAI, N., KRANZLMÜLLER, D. & VOLKERT, J. ROS: The rollback-one-step method to
minimize the waiting time during debugging long-running parallel programs.

International Conference on High Performance Computing for Computational Science,
2002. Springer, 664-678.

WU, X. & MUELLER, F. Elastic and scalable tracing and accurate replay of non-
deterministic events. Proceedings of the 27th international ACM conference on
International conference on supercomputing, 2013. ACM, 59-68.

