
SEMANTIC SALIENCY OF VIDEO CONTENT: APPLICATION TO QUALITY

ASSESSMENT

Ho Tien Lam
1*

, Phan Ho Duy Phuong
2
 Le Dinh Phu Cuong

3

1
UF-HCM – Ho Chi Minh National University

2

Cuu Long University,
3
 Yersin University, Dalat

*Corresponding Author: hotienlam@gmail.com

(Received: July 30
th

, 2016; Accepted: August 31
th

, 2016)

ABSTRACT
Enjoying video on digital television as well as Internet has become a significant demand at the

present time. People demand not only as fast system response time but also a high video quality.

However, through the transmission networks and processing system, some amounts of errors

may be introduced in the video signal, so video quality assessing is an important problem. Many

researchers proposed a lot of methods for evaluating video quality. Researchers at LaBRI have

proposed to assess video quality taking into account visual saliency. Visual saliency of an item

is the state or quality by which it stands out relative to its neighbors. Spatial and temporal

saliency were be used for defining an objective quality assessment metric. The aim of this topic

was to help in studying if a semantic saliency, based on faces, could improve this metric. In this

topic studied how to create semantic saliency maps, if human faces on video frame attract

viewer’s attention, and how to use a face detection algorithm for automatic semantic map

construction.
Keyword: LaBRI (Laboratoire Bordelais de Recherche en Infromatique) is a French research

laboratory in field of computer science. It is associated with CNRS (UMR 5800), the University

of Bordeaux 1, the IPB and the University of Bordeaux 2. It has been the partner of INRIA since
2002.

TÓM TẮT
Thưởng thức video trên truyền hình kỹ thuật số cũng như Internet đã trở thành một nhu cầu

quan trọng ở thời điểm hiện tại. Mọi người có nhu cầu không chỉ có thời gian đáp ứng hệ thống

nhanh mà còn là một video chất lượng cao. Tuy nhiên, thông qua các mạng lưới và hệ thống

xử lý truyền dẫn, một số lượng lỗi có thể được giới thiệu trong các tín hiệu video, do đó chất

lượng video đánh giá là một vấn đề quan trọng. Nhiều nhà nghiên cứu đã đề xuất rất nhiều

phương pháp để đánh giá chất lượng video. Các nhà nghiên cứu tại LaBRI đã đề xuất để đánh

giá chất lượng video nhìn rõ ràng. Hình ảnh rõ ràng của một mục là trạng thái hay chất lượng

mà nó đứng yên tương đối so với các hình ảnh kế cận với nó. Sự rõ ràng không gian và thời

gian đã được sử dụng để xác định một chỉ số đánh giá chất lượng khách quan. Mục đích của

đề tài này là để giúp trong việc nghiên cứu nếu sự rõ ràng ngữ nghĩa, dựa trên khuôn mặt, có

thể cải thiện sự đo đạc này. Trong chủ đề này nghiên cứu làm thế nào để tạo ra bản đồ sự rõ

ràng ngữ nghĩa, nếu khuôn mặt của con người trên khung hình video thu hút sự chú ý của người

xem, và làm thế nào để sử dụng một thuật toán nhận diện khuôn mặt để xây dựng bản đồ ngữ

nghĩa một cách tự động.
Từ khóa: LaBRI (Laboratoire Bordelais de Recherche en Infromatique) là một phòng thí

nghiệm nghiên cứu của Pháp trong lĩnh vực khoa học máy tính. Nó được kết hợp với CNRS
(UMR 5800), Đại học Bordeaux 1, IPB và Đại học Bordeaux 2. Nó đã là thành viên của INRIA

kể từ năm 2002.

INTRODUCTION
According to physiological and psychological
evidences, we know that human beings do not

pay equal attention to all exposed visual
information, but only focus on certain areas

known as focus of

attention (FOA) or saliency regions [6]. The

LaBRI’s researchers have proposed a novel

objective quality assessment metric using

spatio-temporal saliency map [3]. In the

literature, the saliency of the visual scene is

characterized by two saliency maps called

32

mailto:hotienlam@gmail.com

Science and Technology Development, Vollum 2 (3)

spatial and temporal saliency maps. The

spatial saliency map is based on color or

contrast, for example. The temporal saliency

map is computed with the residual motion in

the visual scene with regard to global and

camera motion. And the spatio-temporal

saliency map is the result of the fusion step.
These results will be integrated into the

existing method [3] to assess video quality.

Figure 1 gives an overview to the whole

process. To enhance this method, the semantic

saliency map is generated in two ways,

manual way and automatic way. The detail of

manual way is described in section II.1 and

II.2. The results of this task will be used in

automatic way which is described in II.4.

Section II.3 will show a statistics of faces in

saliency maps.
Below we introduce some important terms
used in this report.
Saliency Map is used for representing the

saliency areas in an image and guiding the
selection of attended locations, based on the

spatial distribution of saliency [4].
Gaussian Map is a gray-scale saliency map

which assigns a saliency value to each pixel.
This value is calculated by using the formula

of Gaussian function. This function will be

introduced in section II.2.3.
Error Map is a gray-scale image. The white

areas in this map represent the error location
in a distorted image. This map is produced by

video decoder in processing systems.
Bounding Box is a rectangle which surrounds

an object of interest. In context of this study,

we are only concerned by bounding boxes

around human faces. The purpose of these

bounding boxes is to represent sematic

saliency regions in an image. The bounding

boxes may be generated manually by using

BBBox Annotation Software, introduced in

section II.1, or automatically by face detection

algorithm, introduced in section 2.4.
Figure 2 illustrates an example of

bounding boxes and the corresponding

Gaussian map, and figure 3 gives an example

of error map and ground-truth saliency map

produced by eye-tracker. In Gaussian map, the

white areas show the salient locations in the

image. The pixel value becomes whiter when

the point goes closer to the center of

bounding box. This kind of map and the

saliency map from eye-tracking device show

visual areas which actually attract viewers’

attention. However, these maps are generated

manually by human or supporting device. So

it is not effective for automatic video quality

assessment. The purpose of using these maps

is to compare with the quality assessment

metric using automatically produced saliency

maps.

Figure 1. Process Overview

Figure 2. Example of Bounding boxes and

Gaussian map

Figure 3. Example of Error map
and Ground-truth saliency map

VISUAL SALIENCY DETECTION

The goal of us training placement is to create
“semantic saliency” maps of HD video which
express the presence of a semantic object-
“face”. We thus present related tasks below:
- Adapt software of face annotation for
annotating HD videos.
- Annotate the ground truth: trace the
bounding boxes of faces and store their

coordinates observed in video frames by
human.

33

Science and Technology Development, Vollum 2 (3)

- For manually annotated bounding boxes of
faces, we compute the saliency maps with the

help of Gaussian filtering.
- Detect faces automatically by using Viola-
Jones face detector of OpenCV library.
In the following sub-chapter, we will thus
describe our contribution into adaptation of
face-annotation GUI.

BBBOX ANNOTATION SOFTWARE

To annotate videos, we used the BBBox

software developed in LaBRI on the basis of

Viola-Jones object detection algorithm. This Figure 4. Screenshot of BBBox

application is written in C++, and it uses Qt
1

framework to build graphical user interface MISSING FEATURES OF BBBOX

(GUI). The aim of this task is to annotate SOFTWARE

high-definition videos. In this task, we have Suppose that user open a full-HD video with

to work with Qt framework which is display resolution (1920 x 1080) bigger than

described in section II.1.1. that of desktop screen – what will happen?

INTRODUCTION OF QT

The problem with the actual version of

BBBox is that cannot adjust the window size

FRAMEWORK to fit well in desktop screen. Moreover, the

This section introduces Qt Framework which software does not scale the movie scene up

is free and open source software. Qt is a or down when a user resizes the window.

cross-platform application framework that is Solving these two problems is one of us

widely used for developing software with a tasks. For the first problem, we corrected

GUI and non-GUI grograms. At first, Qt is completely so that BBBox window can fit in

produced by Trolltech, an Norwegean desktop screen. The second problem was

company, in May 1995. Currently, it is partially solved. It was possible to scale the

developed by Nokia’s Qt Development image up, while the act of scaling down was

Frameworks division after Nokia’s not successful. Section II.1.5 will elaborate

acquisition of Trolltech. Since Trolltech’s more on the solution for these issues.
birth, Qt has become a product used by

thousands of customers and hundreds of ARCHITECTURE OF BBBOX

thousands of open source developers all SOFTWARE

around the world. The community licenses This section describes the architecture and

Qt under both open source licenses (LGPL function of all classes in BBBox. This

and GPL), as well as a commercial license. software includes some classes which are

Using Qt Framework, developers can build implemented using object-oriented model.

C++ application that run natively on many The hierarchy of classes is shown in figure 5.
platforms such as Windows, Linux/Unix,

Mac OS X, and embedded Linux, without

making source code changes. For more

information, please refer to the book “C++

GUI Programming with Qt 4” [1].

FUNCTIONALITY OF BBBOX

SOFTWARE
BBBox is used for annotating the human faces
in each frame of a video. The figure 4 shows
the screenshot of this software.

Figure 5. Class diagram of BBBox

34

Science and Technology Development, Vollum 2 (3)

In Qt Framework, the QWidget class is the

base class of all user interface objects. The

widget is the element of user interface: it

receives mouse, keyboard and other events

from the window system, and paints a

representation of itself on the screen. A widget

that is not embedded in a parent widget is

called a window. In Qt, QMainWindow and

the various subclasses of QDialog are the most

common window types. An application’s

main window is created by subclassing

QMainWindow.
The QLabel class is used for displaying a text

or an image. To display an image, we use the

QPixmap class as a paint device. In definition

of QLabel class, there is a property, pixmap,

which holds the label’s pixmap. This property

is modified through the setPixmap method.
The ImageArea class is both a subclass of
QLabel and a child widget of MainWindow.
This widget will receive mouse and resize
events from user. The way which ImageArea
object handles events is similar to that of Java

Swing
2
. Whenever a user clicks a button or

adjusts window size, many objects in the
application may need to react to the change.
For example, when a user clicks the “Next
frame” button, the ImageArea object will have
to update the new frame on its graphical
representation. To implement this, the BBBox

software uses the Observer pattern
3
. The

structure of this pattern is illustrated in figure
6 taken form Wikipedia. Figure 7 show how
this pattern is used in this software.

Figure 6. UML diagram of Observer pattern

Figure 7. UML diagram of Observer pattern

used in BBBox
Besides the classes liste in figure 5, this

software also uses some classes in another

library called libVideoFeatureBridge. This

library is developed by members in the AIV

group, Hugo Boujut and Boris Mansencal.

Some classes of libVideoFeatureBridge used

in this software are FFMPEGPlayer,

FFMPEGObserver, and FFMPEGFrame.
The word “AABBox” stands for Axis-Aligned

Bounding Box. AABBox always has the

rectangle shape; however, BBox (Bounding

Box) may have the parallelogram shape. That

is the difference between these two kinds of

bounding boxes. Later on we only use the term

“BBox”, “bounding box” or “box” to mention

Axis-Aligned Bounding Box. The AABBox

class defines the attributes of a bounding box

and some utility methods.
In summary, the MainWindow class takes

charge of building user interface, receiving

events, and event-handling. The ImageArea

class is in charge of displaying each frame on

main window and dealing with events. There

may be zero or non-zero human face(s) on

each frame. The ImageArea object, therefore,

holds a list of AABBox objects.

MODIFICATION OF BBBOX

SOFTWARE
As mentioned in section II.1.3, there are two

problems with the actual version of BBBox.

To solve the first problem, the flowchart in

figure 8 is carried out. This is also the

flowchart of the update (FFMPEGFrame)

method in Observer class.

35

Science and Technology Development, Vollum 2 (3)

Figure 8. Flowchart for solving the
first problem

In order to check if main window fits in

desktop screen, we need two input parameters.

They are dimensions of desktop screen and

image which will be shown on ImageArea.

One difficulty that we had in solving this issue

is that we have to calculate main window size

before calling setPixmap() method on

ImageArea. Suppose that we do in inverse

way, i.e. this method is called before the

computation of main window size. What will

happen in this case? This will make main

window bigger than screen. We have

overcome this obstacle by computing

approximately the main window size. This

computation is done with dimension of

displayed image, button height, height of title

bar, space and margin values of layout.
The flowchart in figure 9 describes the steps

for solving second problem. It is also the

flowchart of the resizeEvent(QResizeEvent)

method in ImageAre class. In this method, we

need to scale not, only the pixmap of

ImageArea but also the bounding boxes

displayed on this pixmap. The reason is that

there are two different coordinates of a

bounding box. One coordinate is used for

displaying on the scaled pixmap, and the other

is used for storing in BBoxes file. The latter

one is the BBox coordinate on original video

scene (pixmap). The task of transforming

BBox coordinate between original size and

displaying size is also used in the accessor

methods of ImageArea class,

getBBoxes() and setBBoxes(). The

MainWindow class gets and sets BBox

coordinates through these methods. Thus, the

displaying size of BBox takes effect, only in

the ImageArea class, and its original size takes

effect in the MainWindow class.

Figure 9. Flowchart for solving the
second problem

GROUND-TRUTH FOR SEMANTIC

SALIENCY
Gaussian Map, one kind of saliency map, is

generated by using the results of annotating

videos and Gaussian function. For this task

and the task described in section II.3, we need

to use OpenCV library in processing images.

The following part provides some information

on this library.
INTRODUCTION OF OPENCV

LIBRARY

OpenCV
4
 (Open Source Computer Vision) is

an open-source library that includes hundreds
of computer vision algorithms. OpenCV has
many modules. Each module includes several
shared or static libraries. Below we introduce
some main modules in this library.
- Core: a compact module defining basic data
structures, including the multi-dimensional

array Mat and basic function used by all other
modules.
- Imgproc: an image processing module that
includes linear and nonlinear image filtering,

36

Science and Technology Development, Vollum 2 (3)

geometrical image transformations, color
space conversion, histogram, etc.
video: a video analysis module that includes
motion estimation, back ground subtraction,
and object tracking algorithms.
- Calib3d: basic multiple-view geometry

algorithms, single and stereo camera
calibration, object pose estimation, stereo

correspondence algorithms, and elements of
3D reconstruction.
features2d: salient feature detectors,
descriptors, and descriptor matchers.
- Objdetect: detection of objects and
instances of the predefined classes (for

example, faces, eyes, mugs, people, cars, etc.).
- Highgui: an easy-to-use interface to video
capturing, image and video codecs, as well as
simple UI capabilities.

ANNOTATE SOURCES OF VIDEOS
The aim of this task is to simulate perfect face
detection, and the result of annotating video is

on BBoxes file per video. With this result, we
can construct perfect semantic saliency maps.
There are several sources of videos. Each one

contains many videos of same content, but the

quality of videos is different. These videos

contain the different amount of error in

frames. We annotate them by using the

modified version of BBBox software.

GENERATE GAUSSIAN MAP

Gaussian function
5
 are widely used in

statistics where they describe the normal
distributions, in signal processing where they
server to define Gaussian filters, in image
processing where two-dimensional Gaussians
are used for Gaussian blurs. In this task,
Gaussian functions are used for generating
saliency map. The definition of this function
will be presented in the following section.
Introduction of Gaussian function
In mathematics, a Gaussian function is a
function of the form:

(2.1)

for some real constants ,b,c > 0, and e ≈

2.718281828 (Euler’s number).
The graph of a Gaussian has a shape of
symmetric “bell curve” that quickly falls off

towards plus/minus infinity. The parameter
is the height of the curve’s peak, b is the
position of the center of the peak, and c
controls the width of the “bell”.
For creating Gaussian map, we used a
particular form of two-dimensional Gaussian
function:

 (2.2)
In above formula, the coefficient A is the

amplitude, , is the center and , are

the , dimension of the blob. The figure 10
and figure 11, taken from Wikipedia, give

examples of one-dimensional Gaussian
functions and two-dimensional Gaussian

function.

Figure 10. 1D Gaussian function

Figure 11. 2D Gaussian function
Program Description
The program for generating Gaussian Map
uses the result of section 2.3 and OpenCV

library. The figure 12 summarizes the
processing steps.

37

Science and Technology Development, Vollum 2 (3)

Figure 12. Processing steps for creating

Gaussian Map
In this program, we created the following
classes.

Table 1. Description of some important
classes

Class name Description

AnnotatedFrame Stores a frame number
 and all coordinates of

 bounding boxes on that

 frame

BBoxFileReader Opens a BBoxes file and
 creates an object of

 AnnotatedFrame class

 from information in each

 text line

GaussianMap Computers pixel values
 by using formula of 2D

 Gaussian function and

 outputsagray-scale

 image of Gaussian map
For the task of constructing Gaussian map and

outputting a corresponding image, we used the

matrix structure. The class Mat represents a

2D numerical array that can act as a matrix.

There are many different ways to create Mat

object. Here is the way we used inside the

GaussianMap class:

Listing 1. A method used for
constructing Gaussian map

After creating Mat objects, we scan the list of

bouding boxes, bboxes. This list is stored in

AnnotatedFrame object. For each box, we

modify its width and height if they are smaller

than a predefined value, m_bboxMinSize.

Then we call the method setPixelValue() with

box coordinate and image dimension (width,

height). This method is used for computing all

pixel values inside the area of bounding box.

The pixel value is calculated on the basis of

formula 2.2 with A=255. Then we find the

maximum of m_floatMat matrix to convert

into a matrix of unsigned char type

(m_gaussianMat).

STATISTICS OF FACES IN SALIENCY

MAP
Statistics on faces in saliency maps will let us
know whether human faces attract viewers’

attention. Or how many errors appearing on
faces and where the errors happen on frames

would actually attract viewers’ attention? In
[6], the authors assume that an error that
appears on a saliency region is much more

annoying than an error appearing in an
inconspicuous area.
Input data that we use in this task includes:
BBoxes files: are the results of annotating

videos through the BBBox software. See
section II.2.2 for more details.

38

Science and Technology Development, Vollum 2 (3)

Saliency maps: are created by using eye-
tracking device. They will let us know the

areas on one video frame to which viewers pay

more attention.
Error maps: are extracted from video

decoder in processing systems. These maps
will show the distorted areas on each frame.
By using these kinds of map and faces’

locations in BBoxes file, we compute one

value per video according to the methods

introduced in next section. After that, we plot

all these numbers on one chart for

comparison.
COMPUTATIONAL METHODS
There are three different computation
methods. We can see the new terms,
Overlapped BBox and Overlapped pixel, in
these methods.
Overlapped pixel is the common pixel of
both saliency area (white area) and bounding
box. Thus, it has positive (>0) value.
Overlapped BBox is the bounding box which
overlaps with saliency area.
To check if one BBox overlaps with saliency

area, we read all pixel values of saliency map

within area of BBox. If there exists one pixel

having positive value, that BBox is counted as

a overlapped BBox. In figure 13, the yellow

BBox on the left does not overlap the saliency

area, and the green one on the right is an

overlapped BBox.

Figure 13. Example of overlapped BBox

The calculation of three methods is presented

in following sections. For all methods, we

compute firstly value for the i-th frame in
the video. Then we calculate the mean value
of all previously-computed values. The only
difference between these methods is the

calculation formula of . The mean value is

computed in following equation.

(2.3)
One remark is that the N number in all

equations denotes the number of processed

frames, not the number of frames contained in

a video. This means that we do not process all

frames, but we process the frames containing

faces. To easily remember, we call method 1,

2, 3 by shortened names: COB (Count

Overlapped BBoxes), COP (Count

Overlapped Picels), and FOB (Find

Overlapped BBoxes) respectively. These

names represent the main task in each

computational procedure.
Method COB

This method computes the value for frame i

as follows.

, i

= 0..N(2.4)

Method COP

This method computes the value for frame i

as follows.

, i =
0..N (2.5)

In above formula, we compute percentage pi

of overlapped pixels for one BBox. Then we
get the numerator in equation 2.5 by

calculating the sum of all pi values.

(

2.6)
and

AreaBBox =

widthBBox.heightBBox
Method FOB

This method computers the values for
frame i as follows.

(2.7)

STATISTICAL RESULTS
This section illustrates computed results in

graphs, and the Gnuplot
6
 tool is used for

plotting. As mentioned above, we calculate
one per video by using the methods introduced
in previous section. There are many sources of
videos. We choose one of

39

Science and Technology Development, Vollum 2 (3)

sources which contain nine videos. The best

quality video is video 9. However, the

remaining videos have worse quality, and the

amount of noise appearing on one frame in

every video is different. After the computation

step is done, we plot all these numbers on one

diagram for comparison. The statistical results

in this part will be used for later comparison

in section 4.3.
Firstly, through saliency maps, we examine
the percentage of faces appearing in the

saliency areas. Three methods are used for

computing mean values.
Observing the graph in figure 14, we see that

method COB and FOB have produced the

same values. However, the values produced

by method COP are slightly different because

we compute the percentage of overlapped

pixels for one bounding box. With this

computational way, we know exactly how

many percent of faces overlap with saliency

areas. The mean values range from 0.954194

to 1 (100%). This result shows that viewers

pay more attention to faces on frame.
Secondly, through error maps, we examine the

percentage of faces appearing in the distorted
areas. Only method COB and COP are used

for computing mean values. These values are
plotted on the graph in figure 15.

Figure 14. Statistics of faces in saliency

maps

Figure 15. Statistics of faces in error maps

Finally, we build a combination of saliency
map and error map. This job is performed by

calling the mul method on Mat object as in

following code snippet.

Listing 2. A method used for
constructing Gaussian map

Using these combined map, we examine how

many errors appearing on faces and the

percentage of errors would attract viewers’

attention. Method COB and COP are used for

computing mean values, and these values are

plotted on the graph in figure 16. The videos

having high mean values (video 2, 4, 5, and 8)

will make viewers more annoyed than other

videos.

Figure 16. Statistics of faces in combination

of saliency maps and error maps

AUTOMATIC FACE DETECTION
The purpose of this task is to add automatic
face detection for the automatic semantic map
construction. We give a brief introduction of
Viola-Jones object detection algorithm in
below section. This algorithm is implemented

in an example program
7
 coming with

OpenCV library.

INTRODUCTION OF VIOLA-JONES

ALGORITHM
This algorithm was proposed by Paul Viola

and Michael Jones [5]. The proposed object,

detection framework provides competitive

object detection rates in real-time. There are

three main contributions of this framework.

We will introduce these ideals briefly below.

40

Science and Technology Development, Vollum 2 (3)

The first contribution is a new image

representation called an integral image that

allows for very for very fast feature

evaluation. Their object detection framework

classifies images based on the value of simple

features. One critical motivation for using

features rather than the pixels directly in that

the feature-based system operates much faster

than a pixel-based system. With the use of the

integral image, rectangular features can be

evaluated in constant time.
The second contribution is a method for
constructing a classifier by selecting a small
number of important features using

AdaBoost
8
. In order to select the features and

train the classifier, Viola-Jones use a modified
version of the AdaBoost algorithm developed
by Freund and Schapire in 1995.
The third major contribution is a method for

combining successively more complex

classifiers in a cascade structure which

increases the speed of detector by focusing

attention on promising regions of the image.

The cascaded classifier if composed of stages.

Each one contains a strong classifier. The job

of each stage is to determine whether a given

sub-window is definitely negative (non-face)

or maybe positive. The detection process is

shown in figure 17. This figure is taken from

the article of Viola-Jones.
The strong classifiers are arranged in order of

complexity. If a sub-window passes the first

classifier, it will be evaluated at the second

classifier. A positive result from the second

classifier triggers a third classifier, etc. The

initial classifier discards a large number of

negative sub-windows with very little

processing. Successive classifier discards

additional negatives but require more

processing. Through this model, the numbers

of sub-windows have been decreased

considerably.

The cascade structure reflects the fact that

within an image an excessive amount of sub-

windows are negative. In stead of finding

faces, the algorithm should discard as many

negatives as possible at the earliest stage.

While a positive instance will trigger the

evaluation of each classifier, this event

happens rarely.

STATISTICAL RESULTS WITH

AUTOMATIC DETECTION
In section II.3.2, we have shown that faces

attract more viewer’s attention and thus face

is a good idea for semantic maps. The result of

this work interests us because we want to

know if automatic face detection is good

enough, compared to manual ground-truth

face detection. In this section, we perform the

same experiment that we have done in section

II.3. We also use the similar input data as in

previous experiment. The implementation of

Viola-Jones algorithm in OpenCV has been

modified in order to produce the BBoxes file.

After the face detection is done, we use the

produced BBoxes file as input data of

computation program. The content of this file

is described in section II.1.2.
One problem with face detection is that a

detector trained on frontal faces is unable to

detect profile faces. Therefore, instead of

using a frontal-face detector or a profile-face

detector, we use both of them to detect as

many faces as possible. In this case, we will

have two BBoxes files generated by both

detectors. Thus, we will have to merge files

into one file.
Observing the graph in figure 18 and the one

figure 14, we see that the variation of mean

values is quite considerable. For all methods,

the mean values in the former are greater than

in the latter. The percentage of variation is

shown in table 2.

Figure 17. Cascade Architecture

Figure 18. Statistics of faces (automatic

detection) in saliency maps

41

Science and Technology Development, Vollum 2 (3)

Table 2. Percentage of variation in
mean values

With the comparison in above table, we can

see that the reliability of automatic face

detection is not high. By looking at “Method

COP” curve in figure 18, we see that the mean

values approximately range from 0.45 to 0.65.

In figure 14, these values approximately range

from 0.95 to 1. These ranges let us know that

sometimes the detection is false. Using the

results of unreliable detection, we will

compute the lower mean values. For the two

remaining statistics, the mean values are

slightly different from those in previous

experiment (manual detection).

Figure 19. Statistics of faces (automatic

detection) in error maps

Figure 20. Statistics of faces (automatic

detection) in combination of saliency maps
and error maps

CONCLUSION

This goal has been achieved by:
Modifying BBBox software: BBBox is used

for annotating the human faces in each frame

of a video. There are some problems with the

actual version of BBBox. This task must be

done so that this software is able to annotate

High-definition videos.
Annotating videos: We use the modified

BBBox software to perform this task. The
results are BBoxes files which are created by

BBBox software.
Generating Gaussian map: This map is

generated by using the results of annotating

videos and the formula of Gaussian function.

It lets us know the positions on a video frame

where human faces are located in. In Gaussian

map, the white show the salient locations in

the image.
Examining statistics of faces in saliency

map: Using the methods, we compute the

values for all videos and plot all these numbers

on one diagram for comparison. This statistics

will let us know if human faces attact viewer’s

attention. Or how many percent of errors

appearing on faces and where the errors

happen on frames would actually attract

viewers’s attention?
Automatic Face Detection: This task helps

us detect human faces automatically. The
produced results are the BBoxes files

containing locations of faces.
Examining statistics of automatically-

detected faces in saliency map: We are

interested in the output of this task. Based on

this output, we can compare with the output in

previous statistics. As a result, we can

evaluate the effectiveness of using the

automatic detection.

BIBLIOGRAPHY

JASMIN BLANCHETTE AND MARK SUMMERFIELD, “C++ GUI Programming with Qt
4”, Prentical Hall PTR, Upper Saddle River, NJ, USA, 2006.

Gary R. Bradski, “Computer Vision Face Tracking For Use in a Perceptual User Interface”,

2006.

42

Science and Technology Development, Vollum 2 (3)

H. BOUJUT, J. BENOIS-PINEAU, O. HADAR, T. AHMED, AND P. BONNET, “Weighted-
MSE based on Saliency map for assessing video quality of H.264 video streams”, IS&T

/ SPIE Electronic Imaging, San Francisco: United State, 2011.
L. ITTI, C. KOCH, AND E. NIEBUR, “A Model of Saliency-Based Visual Attention for Rapid

Scene Analysis”, IEEE Trans, On Pattern Analysis and Machine Intelligence,
20(11):1254-1259, 1998.

PAUL VIOLA, MICHAEL JONES, “Robust Real-times Object Detection”, In International

Journal of Computer Vision, 2006.
X. FENG, T. LIU, D. YANG, AND Y. WANG, “Saliency Based Objective Quality Assessment

of Decoded Video Affected by Packet Loss”, In ICIP, pages 2560-2563, 2008.

