SEMANTIC SALIENCY OF VIDEO CONTENT: APPLICATION TO QUALITY
ASSESSMENT
Ho Tien Lam , Phan Ho Duy Phuong Le Dinh Phu Cuong
1UF- HCM Ho Chi Minh National Unlver5|ty

Cuu Long University, 3 Yersin University, Dalat
*Corresponding Author: hotienlam@gmail.com

(Received: July 30th, 2016; Accepted: August 3lth, 2016)

ABSTRACT
Enjoying video on digital television as well as Internet has become a significant demand at the
present time. People demand not only as fast system response time but also a high video quality.
However, through the transmission networks and processing system, some amounts of errors
may be introduced in the video signal, so video quality assessing is an important problem. Many
researchers proposed a lot of methods for evaluating video quality. Researchers at LaBRI have
proposed to assess video quality taking into account visual saliency. Visual saliency of an item
is the state or quality by which it stands out relative to its neighbors. Spatial and temporal
saliency were be used for defining an objective quality assessment metric. The aim of this topic
was to help in studying if a semantic saliency, based on faces, could improve this metric. In this
topic studied how to create semantic saliency maps, if human faces on video frame attract
viewer'’s attention, and how to use a face detection algorithm for automatic semantic map
construction.
Keyword: LaBRI (Laboratoire Bordelais de Recherche en Infromatique) is a French research
laboratory in field of computer science. It is associated with CNRS (UMR 5800), the University
of Bordeaux 1, the IPB and the University of Bordeaux 2. It has been the partner of INRIA since
2002.

TOM TAT

Thudng thirc video trén truyén hinh kj thudt so cing nhur Internet da tro thanh mot nhu cau
quan trong & thoi diém hién tai. Moi nguwoi ¢6 nhu cau khéng chi ¢é thoi gian ddp iing hé thong
nhanh ma con la mot video chat luong cao. Tuy nhien, thong qua cac mang ludi va h¢ thong
xik Iy truyén dan, mot s6 lwong 16i c6 thé dwoc gidi thiéu trong cdc tin hiéu video, do dé chdt
liwong video ddanh gid la mét van dé quan trong. Nhiéu nha nghién ciru da dé xucft rdt nhiéu
phirong phép dé danh gid chdt lwong video. Cdc nha nghién civu tai LaBRI da dé xudt dé danh
gid chat lwong video nhin ré rang. Hinh anh ré rang ciia mét muc la trang thdi hay chdt lwong
ma né ding yén tiwong doi so véi cac hinh anh ké cdn véi né. Sw ré rang khéng gian va thoi
gian da duoc s dung dé xdac dinh mét chi sé danh gid chdt lwong khdach quan. Muc dich cia
dé tai nay la dé gitip trong viéc nghién civu néu sie ré rang ngir nghia, dwa trén khuon mat, co
thé cdi thién su do dac nay. Trong chu dé nay nghién ciru lam thé nao dé tao ra ban dé sw ré
rang ngiv nghia, néu khuén mdt ciia con nguoi trén khung hinh video thu hit sw chit y ciia nguoi
xem, va lam thé ndo dé sir dung mot thudt toan nhan dién khuon mat de xay dung ban do ngir
nghia mot cach tw dong.
Tir khoa: LaBRI (Laboratoire Bordelais de Recherche en Infromatique) la mét phong thi
nghiém nghién ciru ciia Phdp trong linh viee khoa hoc mdy tinh. N6 dwoc két hop véi CNRS
(UMR 5800), Dai hoc Bordeaux I, IPB va Dai hoc Bordeaux 2. N6 dd la thanh vién cia INRIA
ké tir nam 2002.

INTRODUCTION attention (FOA) or saliency regions [6]. The
According to physiological and psychological LaBRI’s researchers have proposed a novel
evidences, we know that human beings do not objective quality assessment metric using
pay equal attention to all exposed visual spatio-temporal saliency map [3]. In the
information, but only focus on certain areas literature, the saliency of the visual scene is
known as focus of characterized by two saliency maps called

32

mailto:hotienlam@gmail.com

Science and Technology Development, Vollum 2 (3)

spatial and temporal saliency maps. The
spatial saliency map is based on color or
contrast, for example. The temporal saliency
map is computed with the residual motion in
the visual scene with regard to global and
camera motion. And the spatio-temporal
saliency map is the result of the fusion step.
These results will be integrated into the
existing method [3] to assess video quality.
Figure 1 gives an overview to the whole
process. To enhance this method, the semantic
saliency map is generated in two ways,
manual way and automatic way. The detail of
manual way is described in section Il.1 and
11.2. The results of this task will be used in
automatic way which is described in 11.4.
Section 11.3 will show a statistics of faces in
saliency maps.

Below we introduce some important terms
used in this report.

Saliency Map is used for representing the
saliency areas in an image and guiding the
selection of attended locations, based on the
spatial distribution of saliency [4].

Gaussian Map is a gray-scale saliency map
which assigns a saliency value to each pixel.
This value is calculated by using the formula
of Gaussian function. This function will be
introduced in section 11.2.3.

Error Map is a gray-scale image. The white
areas in this map represent the error location
in a distorted image. This map is produced by
video decoder in processing systems.
Bounding Box is a rectangle which surrounds
an object of interest. In context of this study,
we are only concerned by bounding boxes
around human faces. The purpose of these
bounding boxes is to represent sematic
saliency regions in an image. The bounding
boxes may be generated manually by using
BBBox Annotation Software, introduced in
section I1.1, or automatically by face detection
algorithm, introduced in section 2.4.

Figure 2 illustrates an example of
bounding boxes and the corresponding
Gaussian map, and figure 3 gives an example
of error map and ground-truth saliency map
produced by eye-tracker. In Gaussian map, the
white areas show the salient locations in the
image. The pixel value becomes whiter when
the point goes closer to the center of

33

bounding box. This kind of map and the
saliency map from eye-tracking device show
visual areas which actually attract viewers’
attention. However, these maps are generated
manually by human or supporting device. So
it is not effective for automatic video quality
assessment. The purpose of using these maps
is to compare with the quality assessment
metric using automatically produced saliency
maps.

(trom Eye-t

i

Automate
sakency map

Figure 1. Process OverVIeW

i

Figure 2. Example of Boundlng boxes and

Gaussian map
W

Figure 3. ExampleofError map
and Ground-truth saliency map

VISUAL SALIENCY DETECTION

The goal of us training placement is to create
“semantic saliency” maps of HD video which
express the presence of a semantic object-
“face”. We thus present related tasks below:

- Adapt software of face annotation for
annotating HD videos.

- Annotate the ground truth: trace the
bounding boxes of faces and store their
coordinates observed in video frames by
human.

Science and Technology Development, Vollum 2 (3)

- For manually annotated bounding boxes of
faces, we compute the saliency maps with the
help of Gaussian filtering.

- Detect faces automatically by using Viola-
Jones face detector of OpenCV library.

In the following sub-chapter, we will thus
describe our contribution into adaptation of
face-annotation GUI.

BBBOX ANNOTATION SOFTWARE
To annotate videos, we used the BBBox
software developed in LaBRI on the basis of
Viola-Jones object detection algorithm. This
application is written in C++, and it uses Qt1
framework to build graphical user interface
(GUI). The aim of this task is to annotate
high-definition videos. In this task, we have
to work with Qt framework which is
described in section 11.1.1.

INTRODUCTION
FRAMEWORK
This section introduces Qt Framework which
is free and open source software. Qt is a
cross-platform application framework that is
widely used for developing software with a
GUI and non-GUI grograms. At first, Qtis
produced by Trolltech, an Norwegean
company, in May 1995. Currently, it is
developed by Nokia’s Qt Development
Frameworks division after Nokia’s
acquisition of Trolltech. Since Trolltech’s
birth, Qt has become a product used by
thousands of customers and hundreds of
thousands of open source developers all
around the world. The community licenses
Qt under both open source licenses (LGPL
and GPL), as well as a commercial license.
Using Qt Framework, developers can build
C++ application that run natively on many
platforms such as Windows, Linux/Unix,
Mac OS X, and embedded Linux, without
making source code changes. For more
information, please refer to the book “C++
GUI Programming with Qt 4” [1].

OF QT

FUNCTIONALITY
SOFTWARE
BBBox is used for annotating the human faces
in each frame of a video. The figure 4 shows
the screenshot of this software.

OF BBBOX

34

7] «-dv106_pa_18_gabriella_coleman_foss_snthropol_008.09g._-o-_.e-dv106_pa_18_gabr ~ =~ X

Open movie Open BBoxes file.

Save BBoues file Save As BBoxes file.

Remove selected B8ox

Next frame 0

Remove all BBoxes ¥ Keep BBOXes on next frame

Figure 4. Screenshot of BBBox

MISSING FEATURES OF
SOFTWARE

Suppose that user open a full-HD video with
display resolution (1920 x 1080) bigger than
that of desktop screen — what will happen?
The problem with the actual version of
BBBox is that cannot adjust the window size
to fit well in desktop screen. Moreover, the
software does not scale the movie scene up
or down when a user resizes the window.
Solving these two problems is one of us
tasks. For the first problem, we corrected
completely so that BBBox window can fit in
desktop screen. The second problem was
partially solved. It was possible to scale the
image up, while the act of scaling down was
not successful. Section 11.1.5 will elaborate
more on the solution for these issues.

BBBOX

ARCHITECTURE
SOFTWARE

This section describes the architecture and
function of all classes in BBBox. This
software includes some classes which are
implemented using object-oriented model.
The hierarchy of classes is shown in figure 5.

QtGui module |

OF BBBOX

Qwidget

\(‘\

QMainwindow

Mainwindow

imageArea

AABBOX

Figure 5. Class diagram of BBBox

Science and Technology Development, Vollum 2 (3)

In Qt Framework, the QWidget class is the
base class of all user interface objects. The
widget is the element of user interface: it
receives mouse, keyboard and other events
from the window system, and paints a
representation of itself on the screen. A widget
that is not embedded in a parent widget is
called a window. In Qt, QMainWindow and
the various subclasses of QDialog are the most
common window types. An application’s
main window is created by subclassing
QMainWindow.

The QLabel class is used for displaying a text
or an image. To display an image, we use the
QPixmap class as a paint device. In definition
of QLabel class, there is a property, pixmap,
which holds the label’s pixmap. This property
is modified through the setPixmap method.
The ImageArea class is both a subclass of
QLabel and a child widget of MainWindow.
This widget will receive mouse and resize
events from user. The way which ImageArea
object handles events is similar to that of Java

Swingz. Whenever a user clicks a button or
adjusts window size, many objects in the
application may need to react to the change.

For example, when a user clicks the “Next
frame” button, the ImageArea object will have
to update the new frame on its graphical
representation. To implement this, the BBBox

software uses the Observer pattern?’. The
structure of this pattern is illustrated in figure
6 taken form Wikipedia. Figure 7 show how

this pattern is used in this software.
Subject

tobserverCollection
tregisterObserver (observer)
+unregisterObserver (observer)
+notifybservers()

Observer <>

snotify()

A

\

notifyObservers()

for observer in observerCollection
call observer.notify()

ConcreteObserverA| |ConcreteObserverB

snotify()

Figure 6. UML diagram of Observer pattern

otify()

35

FFMPEGObserver

FEMPEGPlaver

“|decodeNextFramel) : bool
registerObserver(FFMPEGObserver) : void

T

pdate(FFV ame .c‘;-y- observer

|
|
|

decodeNextFrame() {

Observer

' a: ImageArea
&m_currentindex : sce t

m_updateimage : bool

ifim_observer 1= NULL && IseekMode)
m_observer-»update(fimpeqFrame)

Obsenver{imageAves,sce) }

update(FFMPEGFrame) : void

Figure 7. UML diagram of Observer pattern
used in BBBox
Besides the classes liste in figure 5, this
software also uses some classes in another
library called libVideoFeatureBridge. This
library is developed by members in the AlIV
group, Hugo Boujut and Boris Mansencal.
Some classes of libVideoFeatureBridge used
in this software are FFMPEGPlayer,
FFMPEGObserver, and FFMPEGFrame.
The word “AABBox” stands for Axis-Aligned
Bounding Box. AABBox always has the
rectangle shape; however, BBox (Bounding
Box) may have the parallelogram shape. That
is the difference between these two kinds of
bounding boxes. Later on we only use the term
“BBox”, “bounding box” or “box” to mention
Axis-Aligned Bounding Box. The AABBox
class defines the attributes of a bounding box
and some utility methods.
In summary, the MainWindow class takes
charge of building user interface, receiving
events, and event-handling. The ImageArea
class is in charge of displaying each frame on
main window and dealing with events. There
may be zero or non-zero human face(s) on
each frame. The ImageArea object, therefore,
holds a list of AABBoXx objects.
MODIFICATION OF
SOFTWARE
As mentioned in section 11.1.3, there are two
problems with the actual version of BBBox.
To solve the first problem, the flowchart in
figure 8 is carried out. This is also the
flowchart of the update (FFMPEGFrame)
method in Observer class.

BBBOX

Science and Technology Development, Vollum 2 (3)

Start

Does 1 n window NO

End

Figure 8. Flowchart for solving the
first problem

In order to check if main window fits in
desktop screen, we need two input parameters.
They are dimensions of desktop screen and
image which will be shown on ImageArea.
One difficulty that we had in solving this issue
is that we have to calculate main window size
before calling setPixmap() method on
ImageArea. Suppose that we do in inverse
way, i.e. this method is called before the
computation of main window size. What will
happen in this case? This will make main
window bigger than screen. We have
overcome this obstacle by computing
approximately the main window size. This
computation is done with dimension of
displayed image, button height, height of title
bar, space and margin values of layout.

The flowchart in figure 9 describes the steps
for solving second problem. It is also the
flowchart of the resizeEvent(QResizeEvent)
method in ImageAre class. In this method, we
need to scale not, only the pixmap of
ImageArea but also the bounding boxes
displayed on this pixmap. The reason is that
there are two different coordinates of a
bounding box. One coordinate is used for
displaying on the scaled pixmap, and the other
is used for storing in BBoxes file. The latter
one is the BBox coordinate on original video
scene (pixmap). The task of transforming
BBox coordinate between original size and
displaying size is also used in the accessor
methods of ImageArea class,

getBBoxes() and setBBoxes(). The
MainWindow class gets and sets BBox
coordinates through these methods. Thus, the
displaying size of BBox takes effect, only in
the ImageArea class, and its original size takes
effect in the MainWindow class.

Start

End

Figure 9. Flowchart for solving the
second problem

GROUND-TRUTH FOR SEMANTIC
SALIENCY

Gaussian Map, one kind of saliency map, is
generated by using the results of annotating
videos and Gaussian function. For this task
and the task described in section 11.3, we need
to use OpenCV library in processing images.
The following part provides some information
on this library.
INTRODUCTION
LIBRARY

OpenCV4 (Open Source Computer Vision) is
an open-source library that includes hundreds
of computer vision algorithms. OpenCV has
many modules. Each module includes several
shared or static libraries. Below we introduce
some main modules in this library.

- Core: a compact module defining basic data
structures, including the multi-dimensional
array Mat and basic function used by all other
modules.

- Imgproc: an image processing module that
includes linear and nonlinear image filtering,

OF OPENCV

36

Science and Technology Development, Vollum 2 (3)

geometrical image transformations, color
space conversion, histogram, etc.

video: a video analysis module that includes
motion estimation, back ground subtraction,
and object tracking algorithms.

- Calib3d: basic multiple-view geometry
algorithms, single and stereo camera
calibration, object pose estimation, stereo
correspondence algorithms, and elements of
3D reconstruction.

features2d: salient feature detectors,
descriptors, and descriptor matchers.
Objdetect: detection of objects and
instances of the predefined classes (for
example, faces, eyes, mugs, people, cars, etc.).
- Highgui: an easy-to-use interface to video
capturing, image and video codecs, as well as
simple Ul capabilities.

ANNOTATE SOURCES OF VIDEQOS

The aim of this task is to simulate perfect face
detection, and the result of annotating video is
on BBoxes file per video. With this result, we
can construct perfect semantic saliency maps.
There are several sources of videos. Each one
contains many videos of same content, but the
quality of videos is different. These videos
contain the different amount of error in
frames. We annotate them by using the
modified version of BBBox software.

GENERATE GAUSSIAN MAP

Gaussian function® are widely used in
statistics where they describe the normal
distributions, in signal processing where they
server to define Gaussian filters, in image
processing where two-dimensional Gaussians
are used for Gaussian blurs. In this task,
Gaussian functions are used for generating
saliency map. The definition of this function
will be presented in the following section.
Introduction of Gaussian function

In mathematics, a Gaussian function is a
function of the form:

(x-b)2

f(x) =ae” = (2.1)
for some real constants ab,c>0,and e =

2.718281828 (Euler’s number).
The graph of a Gaussian has a shape of
symmetric “bell curve” that quickly falls off

37

towards plus/minus infinity. The parameter ¢
is the height of the curve’s peak, b is the
position of the center of the peak, and c
controls the width of the “bell”.

For creating Gaussian map, we used a
particular form of two-dimensional Gaussian

function:

In above formula, the coefficient A is the
Xo Yo

2 2

(¢ 1’9) * (y- ygg)

0l Py
..01. .ﬂy

amplitude, is the center and %=, % are

the X, ¥ dimension of the blob. The figure 10
and figure 11, taken from Wikipedia, give

examples of one-dimensional Gaussian
functions and two-dimensional Gaussian
function.
- * ‘ T]
€= (,2, w—
21,0, m—
08 2250, m—l"
€=(.5, m—|
~ 06 i
%
s':.i 0.4
02 T —
0,0 |—— i 5 —

L |
2 1 2 3 4

| Figure 10. 1D Gaussian function

4 3 0 1

Figure 11. 2D Gaussian function
Program Description
The program for generating Gaussian Map
uses the result of section 2.3 and OpenCV
library. The figure 12 summarizes the
processing steps.

Science and Technology Development, Vollum 2 (3)

Figure 12. Processing steps for creating
Gaussian Map
In this program, we created the following
classes.
Table 1. Description of some important

classes

Class name Description

AnnotatedFrame | Stores a frame number
and all coordinates off
bounding boxes on that
frame

BBoxFileReader | Opens a BBoxes file and
creates an object off
AnnotatedFrame class
from information in each
text line

GaussianMap Computers pixel values
by using formula of 2D
Gaussian function and
outputsagray-scale
image of Gaussian map

For the task of constructing Gaussian map and
outputting a corresponding image, we used the
matrix structure. The class Mat represents a
2D numerical array that can act as a matrix.
There are many different ways to create Mat
object. Here is the way we used inside the
GaussianMap class:

38

void
GaussianMap::set(const AABBoxCollection &bboxes, int width,
int height)
{
if (!bboxes.empty()) {
// Create two Mat objects
// m_gaussianMat: outputs image of Gaussian map
// m_floatMat: stores pizel values in float number
m_gaussianMat = Mat(height, width, CV_8UC1);
m_floatMat = Mat::zeros(height, width, CV_32FC1);
for (int i = 0; i < bboxes.size(); i++) {
AABBox bbox = bboxes[i];
if (bbox.width() < m_bboxMinSize) {
bbox.set (bbox.xMin(), bbox.yMin(), m_bboxMinSize,
bbox.height ());
}
if (bbox.height() < m_bboxMinSize) {
bbox.set (bbox.xMin(), bbox.yMin(), bbox.width(),
m_bboxMinSize);
}
setPixelValue (bbox, width, height);
}
// Get maz of m_floatMat
float maxMat = 0;
for(int row = 0; row < m_floatMat.rows; row++
for(int col = 0; col < m_floatMat.cols; col++
if (maxMat < m_floatMat.at<ELT_TYPE>(row, col))
maxMat = m_floatMat.at<ELT_TYPE>(row, col);
// Normalize
assert (maxMat !'= 0);
m_floatMat.convertTo(m_gaussianMat, CV_8UC1, 255/maxMat);

Listing 1. A method used for
constructing Gaussian map

After creating Mat objects, we scan the list of
bouding boxes, bboxes. This list is stored in
AnnotatedFrame object. For each box, we
modify its width and height if they are smaller
than a predefined value, m_bboxMinSize.
Then we call the method setPixelVValue() with
box coordinate and image dimension (width,
height). This method is used for computing all
pixel values inside the area of bounding box.
The pixel value is calculated on the basis of
formula 2.2 with A=255. Then we find the
maximum of m_floatMat matrix to convert
into a matrix of unsigned char type
(m_gaussianMat).

STATISTICS OF FACES IN SALIENCY
MAP

Statistics on faces in saliency maps will let us
know whether human faces attract viewers’
attention. Or how many errors appearing on
faces and where the errors happen on frames
would actually attract viewers’ attention? In
[6], the authors assume that an error that
appears on a saliency region is much more
annoying than an error appearing in an
inconspicuous area.

Input data that we use in this task includes:
BBoxes files: are the results of annotating
videos through the BBBox software. See
section 11.2.2 for more details.

Science and Technology Development, Vollum 2 (3)

Saliency maps: are created by using eye-
tracking device. They will let us know the
areas on one video frame to which viewers pay
more attention.

Error maps: are extracted from video
decoder in processing systems. These maps
will show the distorted areas on each frame.
By using these kinds of map and faces’
locations in BBoxes file, we compute one
value per video according to the methods
introduced in next section. After that, we plot
all these numbers on one chart for

comparison.
COMPUTATIONAL METHODS
There are three different computation

methods. We can see the new terms,
Overlapped BBox and Overlapped pixel, in
these methods.

Overlapped pixel is the common pixel of
both saliency area (white area) and bounding
box. Thus, it has positive (>0) value.
Overlapped BBox is the bounding box which
overlaps with saliency area.

To check if one BBox overlaps with saliency
area, we read all pixel values of saliency map
within area of BBox. If there exists one pixel
having positive value, that BBox is counted as
a overlapped BBox. In figure 13, the yellow
BBox on the left does not overlap the saliency
area, and the green one on the right is an
overlapped BBox.

Figure 13. Example of overlapped BBox
The calculation of three methods is presented
in following sections. For all methods, we

compute firstly value f: for the i-th frame in
the video. Then we calculate the mean value
of all previously-computed values. The only
difference between these methods is the

calculation formula of fi. The mean value is
computed in following equation.

F= Z;'\':gfi

N (2.3)

One remark is that the N number in all
equations denotes the number of processed
frames, not the number of frames contained in
a video. This means that we do not process all
frames, but we process the frames containing
faces. To easily remember, we call method 1,
2, 3 by shortened names: COB (Count
Overlapped BBoxes), COP (Count
Overlapped Picels), and FOB (Find
Overlapped BBoxes) respectively. These
names represent the main task in each
computational procedure.

Method COB

This method computes the value f; for frame i

as follows.
f __ Numbsr of overlapped BBoxss

Number of BBoxes on frame , i
=0..N(2.4)
Method COP
This method computes the value f; for frame i
as follows.

f __ Totalpercsntags of overlapped pixels
;=

Number of BBoxes on frame , i =
0..N (2.5)

In above formula, we compute percentage pi

of overlapped pixels for one BBox. Then we

get the numerator in equation 2.5 by

calculating the sum of all pi values.

__ Number of overlapped pixels in one BBox

pi - AreaBBox (
2.6)
and
AreasBox =
widthasox.heightasox
Method FOB

This method computers the values f: for
frame i as follows.

-

» if there sxists one overlapped BBox(Z 7)
, otherwise '

STATISTICAL RESULTS
This section illustrates computed results in

graphs, and the Gnuplot6 tool is used for
plotting. As mentioned above, we calculate
one per video by using the methods introduced
in previous section. There are many sources of
videos. We choose one of

39

Science and Technology Development, Vollum 2 (3)

sources which contain nine videos. The best
quality video is video 9. However, the
remaining videos have worse quality, and the
amount of noise appearing on one frame in
every video is different. After the computation
step is done, we plot all these numbers on one
diagram for comparison. The statistical results
in this part will be used for later comparison
in section 4.3.
Firstly, through saliency maps, we examine
the percentage of faces appearing in the
saliency areas. Three methods are used for
computing mean values.
Observing the graph in figure 14, we see that
method COB and FOB have produced the
same values. However, the values produced
by method COP are slightly different because
we compute the percentage of overlapped
pixels for one bounding box. With this
computational way, we know exactly how
many percent of faces overlap with saliency
areas. The mean values range from 0.954194
to 1 (100%). This result shows that viewers
pay more attention to faces on frame.
Secondly, through error maps, we examine the
percentage of faces appearing in the distorted
areas. Only method COB and COP are used
for computing mean values. These values are
plotted on the graph in figure 15.

1 x

0.995 +
099 |
0.985 } g {
0.98 |
0975 + {
097 ¢ | Method FOB

N value

ear

0.965 }
0.96 }

0.955 | ¥
0.95

Video
Figure 14. Statistics of faces in saliency
maps

Mean value
1]
Q
9

3 4 5 6 7 8

Figure 15. Statistics of faces in error maps

Finally, we build a combination of saliency
map and error map. This job is performed by
calling the mul method on Mat object as in
following code snippet.

// Get list of BBozes on AnnotatedFrame object
AABBoxCollection bboxes = aframe.getBBoxes();

// Performs an element-wise multiplication of

// the two matrices (errorMap & eyeTrackerMap)
Mat A = errorMap.mul(eyeTrackerMap);

// Compute value for ome frame

float v = compute(A, bboxes, method);

Listing 2. A method used for

constructing Gaussian map
Using these combined map, we examine how
many errors appearing on faces and the
percentage of errors would attract viewers’
attention. Method COB and COP are used for
computing mean values, and these values are
plotted on the graph in figure 16. The videos
having high mean values (video 2, 4, 5, and 8)
will make viewers more annoyed than other
videos.

Mean value
™
]
=
(=]
o
r

3 4 5 6 7 8

VIQE

Figure 16. Statistics of faces in combination
of saliency maps and error maps

AUTOMATIC FACE DETECTION

The purpose of this task is to add automatic
face detection for the automatic semantic map
construction. We give a brief introduction of
Viola-Jones object detection algorithm in
below section. This algorithm is implemented
in an example program7 coming with
OpenCV library.

INTRODUCTION OF VIOLA-JONES
ALGORITHM

This algorithm was proposed by Paul Viola
and Michael Jones [5]. The proposed object,
detection framework provides competitive
object detection rates in real-time. There are
three main contributions of this framework.
We will introduce these ideals briefly below.

40

Science and Technology Development, Vollum 2 (3)

The first contribution is a new image
representation called an integral image that
allows for very for very fast feature
evaluation. Their object detection framework
classifies images based on the value of simple
features. One critical motivation for using
features rather than the pixels directly in that
the feature-based system operates much faster
than a pixel-based system. With the use of the
integral image, rectangular features can be
evaluated in constant time.

The second contribution is a method for
constructing a classifier by selecting a small
number of important features using

AdaBoost®. In order to select the features and
train the classifier, Viola-Jones use a modified
version of the AdaBoost algorithm developed
by Freund and Schapire in 1995.

The third major contribution is a method for
combining successively more complex
classifiers in a cascade structure which
increases the speed of detector by focusing
attention on promising regions of the image.
The cascaded classifier if composed of stages.
Each one contains a strong classifier. The job
of each stage is to determine whether a given
sub-window is definitely negative (non-face)
or maybe positive. The detection process is
shown in figure 17. This figure is taken from
the article of Viola-Jones.

The strong classifiers are arranged in order of
complexity. If a sub-window passes the first
classifier, it will be evaluated at the second
classifier. A positive result from the second
classifier triggers a third classifier, etc. The
initial classifier discards a large number of

negative sub-windows with very little
processing. Successive classifier discards
additional negatives but require more

processing. Through this model, the numbers

of sub-windows have been decreased
considerably.
All Sub-windows
v
T ‘ T T Further
1 " T Processing
F F F
v . -

Reject Sub-window

Figure 17. Cascade Architecture

The cascade structure reflects the fact that
within an image an excessive amount of sub-
windows are negative. In stead of finding
faces, the algorithm should discard as many
negatives as possible at the earliest stage.
While a positive instance will trigger the

evaluation of each classifier, this event
happens rarely.
STATISTICAL RESULTS WITH

AUTOMATIC DETECTION

In section 11.3.2, we have shown that faces
attract more viewer’s attention and thus face
is a good idea for semantic maps. The result of
this work interests us because we want to
know if automatic face detection is good
enough, compared to manual ground-truth
face detection. In this section, we perform the
same experiment that we have done in section
I1.3. We also use the similar input data as in
previous experiment. The implementation of
Viola-Jones algorithm in OpenCV has been
modified in order to produce the BBoxes file.
After the face detection is done, we use the
produced BBoxes file as input data of
computation program. The content of this file
is described in section 11.1.2.

One problem with face detection is that a
detector trained on frontal faces is unable to
detect profile faces. Therefore, instead of
using a frontal-face detector or a profile-face
detector, we use both of them to detect as
many faces as possible. In this case, we will
have two BBoxes files generated by both
detectors. Thus, we will have to merge files
into one file.

Observing the graph in figure 18 and the one
figure 14, we see that the variation of mean
values is quite considerable. For all methods,
the mean values in the former are greater than
in the latter. The percentage of variation is
shown in table 2.

0.75 }

Mean value

Video

Figure 18. Statistics of faces (automatic
detection) in saliency maps

41

Science and Technology Development, VVollum 2 (3)

Table 2. Percentage of variation in
mean values

Video | Method COB | Method COP | Method FOB
(%) (%) (%)

1 15.5218 34.5074 2.269

2 25.1572 11.8283 20.3616

3 27.031 10.1353 19.1257

| 229167 13.0106 I18.75

b 34.3675 17.6441 28.6868

6
7
8
9

17.8407
20.6969
21.0391
14.4102

334175
39.3025
37.1462
39.3511

6.1338
6.0099
111111
1.6759
With the comparison in above table, we can
see that the reliability of automatic face
detection is not high. By looking at “Method
COP” curve in figure 18, we see that the mean
values approximately range from 0.45 to 0.65.
In figure 14, these values approximately range
from 0.95 to 1. These ranges let us know that
sometimes the detection is false. Using the
results of unreliable detection, we will
compute the lower mean values. For the two
remaining statistics, the mean values are
slightly different from those in previous
experiment (manual detection).

).0

0.8

0.6
Method COB

0.5 s
Method COP

Mean value

.3

11

)) |
? 3 4] 8

5 6

Ade

Figure 19. Statistics of faces (automatic
detection) in error maps

Method COB

Method COP

Mean value

o

Figure 20. Statistics of faces (automatic
detection) in combination of saliency maps
and error maps

CONCLUSION

This goal has been achieved by:

Modifying BBBox software: BBBox is used
for annotating the human faces in each frame
of a video. There are some problems with the
actual version of BBBox. This task must be
done so that this software is able to annotate
High-definition videos.

Annotating videos: We use the modified
BBBox software to perform this task. The
results are BBoxes files which are created by
BBBox software.

Generating Gaussian map: This map is
generated by using the results of annotating
videos and the formula of Gaussian function.
It lets us know the positions on a video frame
where human faces are located in. In Gaussian
map, the white show the salient locations in
the image.

Examining statistics of faces in saliency
map: Using the methods, we compute the
values for all videos and plot all these numbers
on one diagram for comparison. This statistics
will let us know if human faces attact viewer’s
attention. Or how many percent of errors
appearing on faces and where the errors
happen on frames would actually attract
viewers’s attention?

Automatic Face Detection: This task helps
us detect human faces automatically. The
produced results are the BBoxes files
containing locations of faces.

Examining statistics of automatically-
detected faces in saliency map: We are
interested in the output of this task. Based on
this output, we can compare with the output in
previous statistics. As a result, we can
evaluate the effectiveness of using the
automatic detection.

BIBLIOGRAPHY
JASMIN BLANCHETTE AND MARK SUMMERFIELD, “C++ GUI Programming with Qt
4>, Prentical Hall PTR, Upper Saddle River, NJ, USA, 2006.
Gary R. Bradski, “Computer Vision Face Tracking For Use in a Perceptual User Interface”,

2006.

42

Science and Technology Development, Vollum 2 (3)

H. BOUJUT, J. BENOIS-PINEAU, O. HADAR, T. AHMED, AND P. BONNET, “Weighted-
MSE based on Saliency map for assessing video quality of H.264 video streams”, IS&T
/ SPIE Electronic Imaging, San Francisco: United State, 2011.

L. ITTI, C. KOCH, AND E. NIEBUR, “A Model of Saliency-Based Visual Attention for Rapid
Scene Analysis”, IEEE Trans, On Pattern Analysis and Machine Intelligence,
20(11):1254-1259, 1998.

PAUL VIOLA, MICHAEL JONES, “Robust Real-times Object Detection”, In International
Journal of Computer Vision, 2006.

X.FENG, T. LIU, D. YANG, AND Y. WANG, “Saliency Based Objective Quality Assessment
of Decoded Video Affected by Packet Loss”, In ICIP, pages 2560-2563, 2008.

