
DEVELOPING A STORAGE SYSTEMFORGPS DAT USED INTRAFFIC

APPLICATIONS

Pham Tran Vu, Nguyen Duc Hai*, Doan Khue

Faculty of Computer Scienceand Engineering, HCMC University of Technology, VNU-HCM

*Corresponding Author: haind@cse.hcmut.edu.vn,

(Received: July 30
th

, 2016; Accepted: August 31
th

, 2016)

ABSTRACT
In recent years, GPS signals collected from mobile devices have become an important data

source for Intelligent Transportation Systems. However, the rapid increase in the number of

GPS transmitters makes those systems receive and process a huge amount of data. This poses

a daunting problem for the system designers to build a system with the ability to process the

data quickly with high accuracy. In this paper, we introduce a new index structure for GPS

data storage system to help solve this problem. Particularly, we store all GPS data in main

memory to provide high read/write performance. We also exploit the spatio-temporal

characteristics of GPS datasets to create a static partition strategy to evenly distributed the

datasets across data nodes in data centers and help the storage system efficiently process range

queries. The experiments show that the proposed method not only has high read and write

performance but also scales well in distributed environment.
Keywords: GPS; Intelligent Transportation Systems; spatio-temporal; in-memory; real-time

TÓM TẮT
Trong những năm gần đây, tín hiệu GPS thu thập từ các thiết bị di động đã trở thành một nguồn

dữ liệu quan trọng cho các Hệ thống Giao thông Thông minh. Tuy nhiên, sự gia tăng nhanh

chóng về số lượng thiết bị thu phát GPS khiến các hệ thống này phải tiếp thu và xử lý rất nhiều

dữ liệu. Điều này gây trở ngại rất lớn cho việc xây dựng các hệ thống có khả năng xử lý dữ liệu

nhanh với độ chính xác cao. Trong bài báo này, tác giả giới thiệu một phương pháp tạo chỉ

mục mới cho dữ liệu GPS để nguồn thông tin này được sử dụng một cách hiệu quả. Cụ thể, tác

giả lưu toàn bộ nguồn dữ liệu GPS trên bộ nhớ chính máy tính để tăng hiệu suất ghi và đọc.

Đồng thời, tác giả cũng khai thác những đặc trưng về không-thời gian của dữ liệu để tạo ra

một phương pháp phân hoạch tĩnh giúp phân phối đều dữ liệu giữa các máy tính lưu trữ trong

các trung tâm dữ liệu. Ngoài ra, phương pháp này cũng hộ trợ rất tốt các câu truy vấn theo

vùng. Kết quả thực nghiệm cho thấy, giải pháp được đề ra không chỉ có hiệu suất đọc và ghi

cao mà còn hoạt đông tốt trong môi trường lưu trữ phân bố.

OVERVIEW
The rapid development of communication and

mobile technology has made applications on

the Internet flourish and become popular to

mobile phone users. Inside those, GPS is one

of the most widely used technologies.

Applications in Intelligent Transportation

Systems (ITS) such as traffic flow prediction

(Necula, 2014) and real-time routing (Ghiani,

et al., 2003) are just a few examples mainly

using this technology.
High accuracy and low cost of GPS

transmitters are parts of the reason why GPS

is popular. In addition, information used for

navigation embedded in GPS signal is very

useful for many applications, especially traffic

ones. For examples, we could use GPS

signals collected from vehicles moving

around a city to monitor the traffic condition.

The temporal and spatial information of each

signal even help the authorities quickly

identify traffic congestion and accidents to

take proper actions in time. Therefore, GPS

transmitters have been integrated into most of

the mobile devices. This, however, causes

many difficulties to exploit this potential type

of data efficiently. Let us take Ho Chi Minh

City as an example. By 2015, the city has

about seven million motorbikes, more than

4000 buses, and 12 thousand taxis. Assume

that the GPS transmitter integrated in each

vehicle creates a new GPS signal to update its

current position every one minute. With the

average velocity of 24 kilometers per

11

mailto:haind@cse.hcmut.edu.vn

Science and Technology Development, Vollum 2 (3)

second, the geographical distance between

two consecutive signals will be about 400

meters. This figure is relatively high and could

greatly affect the accuracy of traffic

applications. If we reduce the distance to

100m in order to improve the accuracy, each

GPS transmitter must generate GPS signals

four times faster. Doing so will create

approximately 40 billion GPS signals per day

and there will be about 500 thousand signals

generated every second. If each signal is only

20 bytes long, we still have to spend up to 1TB

for storing data of one day. All of those figures

are very difficult to handle with current

technologies.
Since most of the users do not want to wait for

the results of their request for so long, most of

the applications focus on reducing the

execution time of processing requests to

improve user experience. With the data and

workload mentioned above, it is difficult to

handle them within a short amount of time.
Motivated by those demands and challenges,

designing an efficient storage system for GPS

data is an urgent need and has been interested

by many research groups. GPS is considered

as spatio-temporal data so it has

characteristics of both time and space. A lot of

research associated with this data type focus

on developing index structures to store and

efficiently exploit its multi- dimensional

characteristics. Classical indexes such as R-

Tree (Guttman, 1984) and QuadTree (Samet,

June, 1984) have been invented for a long time

but are still being used by many applications.

Besides, Geohash (Niemeyer, n.d.), an

encoding technique which transforms

geographical information to strings, are also

used widely in many databases.
Additionally, in the Big Data era, the rapid

increase of data volume makes storing data

across multiple data nodes become a popular

trend. Index structures also evolve to adapt

with those changes. SD-Rtree (Mouza &

Litwin, 2007) is an example of a variance of

R-Tree designed for distributed systems.

There are also dedicated storage systems for

spatio-temporal data such as PIST (Botea, et

al., 2008). This system splits the dataset into

multiple cells according to its spatial

characteristics then constructs an index

structure based on temporal features in each

cell to accelerate the searching process.

Furthermore, many works have tried to use

MapReduce/Hadoop platform in order to deal

with huge GPS datasets efficiently. Hadoop-

GIS (Aji, et al., 2013) is a representative

example of this approach. Such systems

develop several tools work upon the Hadoop

platform to decompose requests from the

applications into multiple small MapReduce

jobs and schedule their execution. Those

solutions, however, only work well with

batch applications which require high

throughput. They do not offer fast data

processing which is greatly needed by real-

time applications.
Methods mentioned above are all designed for

secondary storage devices such as hard disk

and flash. Those devices have large capacity

but perform slowly. As the amount of

workload is keeping increasing and the time

restriction is getting tighter, it seems to be

inefficient to keep all data on those devices.

Recent studies tend to move data to main

memory (RAM) to take its advantage in speed

to improve the performance of data access.

There are even high-quality stores that keep

all of its data in RAM and widely used by

many large applications. Redis and

Memcached are just two representative

examples of such products. However, to the

best of our knowledge, the organization of

those stores is still simple and none of them

fully supports spatio-temporal data.
In this paper, we propose a novel method to

manage spatio-temporal datasets (typically

GPS) in memory of distributed storage

systems. Particularly, we exploit the temporal

and spatial characteristics of GPS data to

construct a multi-layer index which allows

data to be read at very low latency and written

at very high throughput. In addition, our

design also guarantees load balancing and

scales well in distributed environment.

METHODS

Characteristics of GPS Data
We collect GPS data generated from buses

moving around Ho Chi Minh City in several

days and plot them on a digital map of the city.
We split the map into uniform cells by a grid

with the size of 40x40 cells.GPS signals

12

Science and Technology Development, Vollum 2 (3)

in each cell are counted and reported with the
color of the cell as shown in Figure 1.

Figure 1. The spatial distribution of GPS
data in Ho Chi Minh City in four
consecutive days in March, 2015.

Clearly, there is no significant difference in

the spatial distribution of the data observed

among reported days. This is because the

characteristics and behaviors of the moving

objects do not change much as time being. For

example, a student could follow different

paths to go to school on different days.

However, within a month or a year, he would

just follow a couple of paths. Therefore, if we

collect the sample data in long enough time,

there should be no difference among intervals.

Furthermore, the distribution of data reflects

the distribution of population and city

planning: most of GPS signals are created in

the city center and areas with high population

while there are just a few ones in the suburban

areas.
As city planning and infrastructure change

slowly and the behavior of moving objects

tends to repeat periodically, we assume that

the spatial distribution of GPS data is stable.

This is an important assumption for our

proposed method.
A Storage System for GPS Data
We decide to keep data in main memory

(RAM) to satisfy strict time requirements of

real- time applications. Figure 2 describes the

overall architecture of the storage system

constructed according to this decision.

Fundamentally, the design is based on the

organization of S4STRD (Pham, et al., 2015).

The system consists of two parts: a RAM

Cluster and a disk-based database. RAM

Cluster is responsible for storing data in main

memory and using them to directly process

requests from applications. The disk-based

database is a NoSQL database whose main

role is to keep the data permanently on

secondary storage devices.

Figure 2. The overall architecture of
S4STRD.

Every signal sent to the system is written into

RAM Cluster before being synchronized into

the disk-based database. Since there is a large

gap between RAM speed and that of

secondary storage, we implement a buffer

between the two stores. After RAM Cluster

writes a new signal to main memory, the

signal will then be pushed into the buffer. The

buffer itself gradually writes the data to the

disk-based database.
Applications can interact with the system

through API layer provided as a programming

library. This layer has a responsibility to

manage connections to the storage system and

handle data transmissions. Those tasks are

transparent to applications. They just need to

describe their requests, then call

corresponding services, and process the

response.
Data Organization
Let be a set of GSP points within a given data space Ω. Each
point ∈ is defined by a pair of real numbers representing its
coordinates (�, �). Ω = 〈 , � 〉 is a rectangle defined by its
bottom-left corner and upper-right one �. A range query �
= 〈� , �� 〉 is also a rectangle where � , �� ∈ . Executing
the query returns the result which is a set of points = (�, �)
∈ falling into �. In order to specify those points, it is
necessary to scan through several points in . A good data
management method would process such queries with the
number of points to be checked as low as possible.
Current techniques split Ω into subspaces then

query on them instead of checking Ω to

minimize the number of tests to be done.

Subspaces are usually organized in an order

(hierarchically or equally) to help speed up the

retrieval process. This solution significantly

increases the performance but might hinder

writing process since changes in data can make

the structure of the dataset violated the rules set

out in advance and that the system

13

Science and Technology Development, Vollum 2 (3)

must give a lot of time to restructure (e.g., a
storage node on the R-Tree splits into two
child nodes because of overload).
To achieve high performance in both writing

and reading data, we use SIDI (Nguyen, et al.,

2015) to manage data due to its simplicity, low

cost in restructuring and in line with distributed

systems. SIDI uses a grid � of n×n uniform

rectangular cells to cover the whole space Ω.

Each cell is identified by its coordinates (�, �)

where � is the number of cells in the same row

to the left and � is the number of cells below it.

Low-density adjacent cells are combined to

form a new unit, called
“zone”, specified by a 2-tuple 〈 �, �〉 where
�is its lower-left cell and � is its upper-right
one. The aim of using zone is to reduce the
density gap between areas: SIDI tries to add
more cells to zones in low density regions to
equalize their density with those in high
density areas. Hence, distributing data by zone
will ensure even data distribution. Partitioning
dataset into independent zones also guarantees
fast fault recovery since the system only needs
to reload data from missing zones in crashed
data nodes instead of the entire index.

Figure 3. Data partitioning process.
How zones are constructed is not aligned with the
definition. Denote � as the set of points falling
into zone � then |� | is the sum of the density of
cells forming it. Let �Ω = 〈(0,0), (− 1, − 1)〉 be
the largest zone covering the whole space Ω, we
build a zone structure over � by recursively
splitting �Ω into two smaller ones using
horizontal and vertical cuts until we have zones
with the density not exceed a given Θ. At each
stage, a zone is split into two halves by a cut such
that the difference in data density of two new
zones created by this cut is minimized. The set of
created zones could be organized as a binary tree,
whose root is �Ω, called partition tree.

Therefore, it is visible that produced zones (on

leaf nodes of the partition tree) differ from

each other within 1 level (i.e. the number of

edges in the path from this node to the root)

and the deviation in their density tends to be

close to Θ.2
Figure 3 shows an example of how the algorithm works on zone � = 〈(0,0), (3,3)〉 with Θ =

7. The number in each cell represents its density. There are 6 possible cuts to be applied on

�: 〈0,1〉, 〈0,2〉, 〈0,3〉 (horizontal ones) and 〈1,1〉, 〈1,2〉, 〈1,3〉 (vertical ones). The cut 〈0,1〉
divides � into two child zones � = 〈(0,0), (0,3)〉 and �� = 〈(1,0), (3,3)〉.

Hence, |� | = 1 + 2 + 1 + 1 = 5 and

|� | = 24,infers that ||� | − |� ||

= |24 − 5| = 19. Similarly, differences in
density of two child zones when applying the
other cuts are respectively 11, 19, 19, 3, and 9.
Among these, 3 is the smallest number so the cut
〈1,2〉 will be the chosen one as shown in Figure
3b. The same procedure is applied for both child
zones resulting in Figure 3c. The algorithm ends
as no zone having density that is greater than Θ
= 7. The density gap is now decreased from 5 to
3. Figure 3d illustrates the partition tree of the
whole process.
Indexes on time and device ID attributes are

considered as sub-index layers under spatial

partitioning. Since spatial constrains allow

range queries to result in zones, it is necessary

to put sub-indexes inside each zone to handle

queries on other fields. Besides, spatial

partitioning only specifies data position at

data node level, hence, we need to choose

either time attribute or device ID attribute to

be the primary index to decide how data is

stored physically on a node. Since time

attribute is a numerical type, which consumes

less time in processing than string type (device

ID) does, it is suit to build the primary sub-

index on this field and leaving device ID as a

secondary index.
About constructing index structure, index on

time attribute is constructed in an array

arranged in written time order. Binary search

will be used when processing queries on a

certain range of time. For the device ID

attribute, queries usually specify one or many

different IDs, so hash table is a suitable

structure for a string-based attribute like this.
Inside each table’s bucket, data is also stored

14

Science and Technology Development, Vollum 2 (3)

in an array in order of written time to escalate
processing of queries related to both device ID
and time attribute.
Load distribution policy

GPS points ∈ are stored in a system � including � computer node �1,

�2, … ��−1. Since RAM capacity is much less than that of secondary

storage, we decided to keep just one copy of each record of in a node �

∈ �. And since data is partitioned in zones, distributing data to nodes will

be implemented at zone level. Denote � as a result set of mapping from

a set of zone to �: � = {� ∶ � ∈ �} Where � is a set of zones

assigned to a node � : � = {� ∈ ∶ � : � ↦ � }. Denote as a total

capacity of the whole system: = ∑ ∈

The amount of data scattered to a data node

should be according to its capacity compare to

that of other nodes in the system. Particularly,

the greater the value of is, the higher load is

distributed to node � . This is based on the

assumption that data nodes in the system have

different configurations. If the load is

distributed equally, low capacity nodes will

become a bottleneck of the system. Thus, those

with high capacity should receive the higher

load to ensure global performance.

Since data is group by zones, we use zone

density as the smallest unit to calculate the

load on each data node. Thanks to the property

of partitioning algorithm, the density of zones

at the same level tend to be equal to each other

and double that of its children. Let � be the

highest level of zones in , every zone � at

level ℎ will have load weight � determined as

follows: � = 2 −ℎ

Zones at lower level (closer to �Ω) have the

higher load weight. This weight reflects the

relative proportion between levels of density.
Since zone’s density is the unit of the load, and

let zones at level � have the load of 1, the sum of load on �

will be: � = ∑ � ; ∈ Denote � as the sum of load on node

� specified as follows: � = ∑ � ; ∈� For the load on each

node � equivalent to its capacity, then: � ≈ ; �

Thus, in order to achieve load balancing, we must distribute
zones to data nodes in the way so that the above condition is
satisfied on every � ∈ �. In addition, locality should also

be reserved to avoid request to be sent to so

many data nodes causing communication

overhead and producing too much load.

Therefore, load distribution process should

scatter zones across storage system by groups

of adjacent zones to guarantee locality.

EXPERIMENT RESULTS
All of our experiments are conducted on the

GPS datasets collected from buses in Ho Chi

Minh City. We implement our solution based

on an existing implementation of S4STRD.

Particularly, S4STRD will take care of storing

data and transferring data between the system

and applications. We just modify its data

management mechanisms and request

processing modules (including read and write)

using the method we have described above.

We conduct experiments on both the modified

version of S4STRAD and MongoDB to

evaluate the efficiency of the proposed

method. We choose MongoDB because it

utilizes Memory Mapping for data

management. This technique is very similar to

storing data in memory explicitly.

Figure4. Write andreadperformanceof
S4STRD and MongoDB.

Figure 4 compares the performance of Single

write (write GPS signals one by one), Multiple

Write (write multiple GPS signal

simultaneously), and read methods of

S4STRD with those of MongoDB. Clearly,

S4STRD outperforms MongoDB in all cases

as its write throughput is about 6x times faster

than that of MongoDB even when

synchronization mode is on (keep

synchronizing data from main memory to

disk). It also reads data 7x times faster than

MongoDB does.

Figure 5. Read and write performance of
S4STRD when changing the number of

data nodes.

15

Science and Technology Development, Vollum 2 (3)

Figure 5 shows that the scalability of proposed
method. Clearly, it scales relatively well as

both write throughput and read latency are

improved significantly when we add more
data nodes to the system.

CONCLUSION
In this paper, we proposed a novel storage

system which is dedicatedly constructed for

spatio- temporal data (GPS for particular).

The storage is designed to efficiently manage

data in main memory of distributed storage

systems. The most noticeable feature of this

system is that it exploits the stable of spatial

and temporal distribution of GPS data to build

a multi-layer index structure which allows

data to be read at very low latency and to be

written at very high throughput. In addition,

the proposed method also guarantees load

balancing and scales well on distributed

environment.

Although observation, analysis, and evaluation

processes are carried out based on the dataset of

buses moving around Ho Chi Minh City, we

believe the proposed method could be applied to

other areas. This is because the infrastructure

and the behavior of moving objects are identical

in cities in Vietnam.
In the future, we plan to improve the system

by doing further research in data distribution

since this is the primary factor that strongly

affects other components of the design. In

addition, we want to expand the research to

using data collected from other sources such

as mobile devices, camera, etc. in order to

have a wider view of the traffic in the city.
Acknowledgement: This work is funded by

Ho Chi Minh City University of Technology

under grant number SVKSTN-2015-

KH&KTMT-08 and Vietnam National

University – Ho Chi Minh City under grant

number B2014-20-07.

REFERENCES
AJI,A. et al., 2013. Hadoop-GIS: AHigh PerformanceSpatial DataWareshousingSystem over

MapReduce.Proceedings of theVLDBEndowment,6(11), pp. 1009-1020.
GHIANI,G., GUERRIERO, F.,LAPORTE, G.& MUSMANNO, R., 2003. Real-time
GUTTMAN, A., 1984. R-trees: a dynamicindexstructure for spatial searching.New York,

NY, USA, s.n., pp. 47-57.
MOUZA, C. & LITWIN,W., 2007.SD-Rtree: Ascalabledistributed Rtree.s.l., s.n. NECULA, E.,

2014. DynamicTraffic Flow Prediction Based on GPS Data.Limassol, s.n., pp. 922-929.
NGUYEN, D.H., DOAN, K. &PHAM, T.V., 2015.SIDI:A ScalableIn-MemoryDensity- based

Indexfor Spatial Databases.Kyoto, The7thInternational Workshop on Data
IntensiveDistributed Computing.

PHAM, T. V., NGUYEN, D. H. &DOAN, K., 2015.S4STRD: AScalablein MemoryStorage
Systemfor Spatio-Temporal Real-timeData. Chengdu, s.n.

SAMET, H., JUNE, 1984. TheQuadtree and Related Hierarchical Data
Structures.ACM Computing Surveys(CSUR),16(2), pp. 187-260.

